Анализ и расчет электрических цепей. Анализ и расчет линейных электрических цепей постоянного тока. Тема: «Расчет и анализ электрических цепей»

В зависимости от числа источников ЭДС (питания) в схеме, ее топологии и других признаков цепи анализируются и рассчитываются различными методами. При этом известными обычно являются ЭДС (напряжения) источников электроэнергии и параметры цепи, расчетными - напряжения, токи и мощности.

В этой главе мы ознакомимся с методами анализа и расчета цепей постоянного тока различной сложности.

Расчет цепей с одним источником питания

Когда в цепи имеется один активный элемент (источник электроэнергии), а другие являются пассивными, например резисторы /? t , R 2 ,..., то цепи анализируются и рассчитываются методом преобразования схем , сущность которого заключается в преобразовании (свертке) исходной схемы в эквивалентную и последующем разворачивании, в процессе которых определяются искомые величины. Проиллюстрируем этот метод для расчета цепей с последовательным, параллельным и смешанным соединением резисторов.

Цепь с последовательным соединением резисторов. Рассмотрим этот вопрос на следующем качественном примере. От идеализированного источника ЭДС Е (R 0 = 0), на выходных зажимах которого имеется напряжение U, т.е. когда E=U , через последовательно соединенные сопротивления R { , R 2 ,..., R n питается нагрузка (приемник) с сопротивлением R H (рис. 2.1, а).

Рис . 2.1

Требуется найти напряжение, сопротивление и мощность цепи эквивалентной заданной, изображенной на рис. 2.1, б, делая соответствующие выводы и обобщения.

Решение

А. При известных сопротивлениях и токе напряжения на отдельных элементах цепи, согласно закону Ома, находились бы так:

Б. Общее напряжение (ЭДС) цепи, согласно второму закону Кирхгофа, запишется так:



Г. Умножив все члены (2-2) на ток / или (2-5) на Р, будем иметь откуда

В. Разделив все члены (2-2) на ток /, получим где


Формулы (2-3), (2-5), (2-7) показывают, что в цепи с одним источником питания и последовательным соединением сопротивлений эквивалентные напряжение, сопротивление и мощность равны арифметическим суммам напряжений, сопротивлений и мощностей элементов цепи.

Приведенные соотношения и выводы свидетельствуют о том, что исходную схему по рис. 2.1, а с сопротивлениями /? 2 , R„ можно заменить (свернуть) простейшей по рис. 2.1, б с эквивалентным сопротивлением R 3 , определяемым по выражению (2-5).

а) для схемы по рис. 2.1, б справедливы соотношения U 3 = U = RI , где R = R 3 + R u . Исключив из них ток /, получим выражение

которое показывает, что напряжение U 3 на одном из сопротивлений цепи, состоящей из двух, соединенных последовательно, равно произведению общего напряжения U на отношение сопротивления этого участка R 3 к общему сопротивлению цепи R. Исходя из этого

б) ток и напряжения в цени но рис. 2.2, б можно записать в различных вариантах:

Решенные задачи

Задача 2.1. Чему равны сопротивление, напряжение и мощность цепи по рис. 2.1, а, если I = 1 A, R x = 1 Ом, Д 2 = 2 Ом, = 3 Ом, R u = 4 Ом?

Решение

Напряжения на резисторах, очевидно, будут равны: U t =IR^ = 1 1 = 1 В, U 2 = IR 2 = = 1 2 = 2 В, U n = /Л я = 1 3 = 3 В, t/ H = ZR H = 1 4 = 4 В. Эквивалентное сопротивление цепи: R 3 = R { + /? 9 + R n = 1 + 2 + 3 = 6 Ом. Сопротивление, напряжение и мощность цепи: /? = &, + /?„ = 6 + 4= 10 Ом; U= U { + U 2 + U„+U n = 1+2 + 3 + 4 = 10 В, или U=IR = = 1 10= 10 В; Р= Ш= 10 - 1 = 10 Вт, или Р= UJ+ U 2 I + U n I+ U U I= 11+21+31 + + 4 1 = 10 Вт, или Р = PR X + PR 2 + PR a + PR n = 12 1 + 12 2 + 12 3 + 12 4 = 10 Вт, или Р = Щ /R x +U? 2 /R 2 +UZ /R n +1/2 /R n = 12 / 1 + 22/2 + 32/3 + 42 /4 = 10 Вт.

Задача 2.2. В цепи по рис. 2.1, а известны: U = МО В, R { = Ом, R 2 = 2 Ом, = = 3 Ом, R H = 4 Ом. Определить U 2 .

Решение

R = /?! + /?, + Л 3 + Л 4 = Л,+ Л Н = 1+2 + 3 + 4 = 6 + 4 = 10 Ом, 1=11/R= 110/10 = = 11 А, // 2 = Л? 2 = 11 2 = 22 В или U 2 =UR 2 /R = 110 2 / 10 = 22 В.

Задачи, требующие решения

Задача 2.3. В цепи по рис. 2.1, а известны: U = МО В, R^ = Ом, R 2 = 2 Ом, R n = = 3 Ом, R u = 4 Ом. Определить Р„.

Задача 2.4. В цепи по рис. 2.1, б известны: U= 110 В, U H = 100 В, = 2 Ом. Определить Р э.

Задача 2.5. В цепи по рис. 2.1,6 известны: U= 110 В, R t = 3 Ом, Д н = 2 Ом. Определить = [q ]/[t ] = Кл/c = A × c /c = A (ампер).

Постоянный электрический ток (в дальнейшем ток ) – это неизмен­ное и однонаправленное движение заряжен­ных частиц (зарядов). При постоянном токе в течение каждого одинакового про­межутка времени Dt переносится одинако­вый заряд Dq . Поэтому ток где q - весь заряд (Кл) за время t (с).

Условное положительное направление тока I во внешней (от источника энергии) цепи противоположно направлению дви­­жения потока электронов (элек­­трон – частица, обладающая наименьшим отрицательным зарядом (q e = -1,602×10 - 19 Кл, тогда 1 Кл = 6,24×10 18 электронов), т. е. он протекает от точ­ки а с большим потен­ци­алом к точке b с меньшим потенциалом, вы­зывая падение напря­жения (в дальнейшем напряжение ) на сопро­тив­лении этого участка

U ab = j а – j b . (1.2)

Электрическое напряжение – это работа, затрачиваемая на перенос единицы заряда (1 Кл) из точки а в точку b электрическогополя по произволь­ному пути. Однозначно определяют толькоразность потенциалов (напряже­ние ) между соответству­ю­щи­ми точками. Когда говорят о потенциале точки элек­трической цепи, то подразумевают разность потенциалов между этой точкой и другой (обычно зазем­лён­ной), потенциал которой принимают равным нулю.

Электродвижущая сила E (в даль­нейшем ЭДС E в вольтах) источника энергии численно равна работе (энергии) W в джоулях (Дж), за­тра­чи­­ваемой сторонним и индуктированным электрическими полями на перемещение единицы заряда (1 Кл) из одной точки поля в другую.

П1.2. Состав электрической цепи. Любая электрическая цепь состоит из следующих элементов:

· источников энергии (активныхэлементов), преобразующих различные виды энергии в электрическую. Это генераторы электрических стан­­ций, аккумуля­торные и солнечные батареи, термопары и др.;

· приёмников электрической энергии (пассивныхэлементов), в которых электрическая энергия преобразуется в другие виды: тепловую (нагревательные элементы), механическую (электрические двигатели), световую (люминесцентные лампы), химическую (гальванические ванны) и др.;

· вспомогательных элементов (проводов, выключателей, предохранителей, ре­­зи­стивных регуляторов тока, измерительных приборов, разъёмов и др.).

Электрические цепи принято изображать в виде электрических схем: принципиальных, монтажных, схем замещения и др. Схема электрической цепи – это её графическое изображение, содержащее условные обозначения элементов цепи и показываю­щее соединения этих элементов.

При анализе электрических цепей их заменяют схемами замещения. Схема замещения электрической цепи – это её расчётно-математическая модель, содержащая иде­альные пассивные (резистивные, индуктивные и ёмкостные) и активные (источники напряжения и источники тока) элементы. Элементом электрической цепи на­зывают отдельное устройство, вы­пол­няющее в цепи определённую фун­к­­цию Эти элементы являются эквивалентами (моделями) реальных устройств цепи, которым теоретически припи­сывают опре­де­лён­ные электрические и магнитные свой­ства, отражающие главные (доми­ни­ру­ющие) процессы в элементах цепи.

Пассивными называют элементы электрической цепи, которые не способны генериро­вать элек­три­че­скую энергию. К пассивным элементам относят резисторы, индуктивные катушки и конденсаторы (табл. П1.1).

Резистор – это пассивный элемент элек­­­трической цепи, предназна­чен­ный для ис­пользования его электрического сопротивления R . Резистор не мо­жет на­капливать энергию: полученная им электрическая энергия необратимопреобразовывается в нёмв тепло­вую энергию.

Т а б л и ц а П1.1. Пассивные элементы цепей и их характеристики

Индуктивная катушка – это пассивный элемент цепи, предназначен­ный для ис­­пользования его собственной индуктивности L и/или его магнитного поля. При нара­стании тока в индуктивной катушке происходит преобразо­вание электрической энергии в магнитную и её накопление в магнитном поле катушки, а при убывании тока – обратное преобразование энергии магнитного поля в электрическую энергию, возвращаемую источнику.

Конденсатор – это пассивный эле­­мент цепи, предназначенный для ис­­­поль­зования его электрической ёмкости С . При нарастании напряжения на зажимах конден­сатора в нём происходит преобразование электрической энергии внешнего источника в энергию электрического поля за счёт накоп­ле­ния зарядов противоположных знаков на двух его электродах (пластинах). При уменьшении напряжения происхо­дит обратное преоб­разова­ние энергии электрического поля в электри­ческую энергию, возвращаемую источнику.

Активные элементы - это источники электрической энергии (аккумуляторы, генераторы и др.). Различают:источники напряжения (ИН) и источники тока (ИТ) в зависимости от их внутреннего сопротивления (табл. П1.2). В источнике напряжения внутреннее сопротивление R вт значительно меньше сопротивления R нагрузки (в идеальном ИН R вт = 0), а в источнике тока R вт значительно больше сопротивления R нагрузки (в идеальном ИТ R вт = ¥), а проводимость (в сименсах)

G вт = 1/R вт << G = 1/R .

Т а б л и ц а П1.2. Активные элементы цепей и их характеристики

I
2 (-)
R вт
+
1 (+)
R
U
U 12
R вт I
I н
I к
I
U , В
E
U н
3
1
2
E
ИН
В, Источник тока (ИТ)
I , A
I вт
G вт
U
U 12
I
0 I н J
2
ИT
I вт
U н

П1.3. Топологические параметры схем цепей . При анализе электрических схем пользуются следующими тополо­гическими параметрами схем:

· ветвь (В ) - участок электрической цепи, вдоль которого протекает один и тот же электрический ток;

· узел (У ) - место соединения ветвей электрической цепи. Обычно место, где соединены две ветви, называют не узлом, а соединением (или уст­ранимым узлом), а узел соединяет не менее трёх ветвей ;

· контур - последовательность ветвей электрической цепи, образующая замкнутый путь, в которой один из узлов одновременно является началом и концом пути, а остальные встречаются только один раз. В элек­­трической цепи вы­де­ляют линейно не­зависимые контуры k н, которые отличаются друг от друга хотя бы одной ветвью. Число независимых контуров зависит от числа ветвей В и числа уз­лов У в цепи:

k н = В – (У – 1). (1.3)

Так, в схеме электрической цепи (рис. П1.1) ветвей В = 5, узлов У = 3, соединений 2, независимых контуров k н = 3.

Примечания.

1. Точки 5 , 6 , 7 и 8 имеют одинаковый электрический по­тен­­ци­ал, поэтому они могут быть геометрически объединены в одну общую точку - узел .

2. Точки 1 и 4 соединяют по два элемента, поэтому их называютточ­ками соединений двух элементов , а не узлами.

Е 1

П1.4. Задача расчёта цепи . Расчёт электрической цепи заключается в опи­са­нии её схемы за­мещения математическими уравнениями и в решении си­стемы уравнений относительно электрических величин. Теория электрических и магнитных цепей базируется на введении па­раметров отдельных участков цепи, из которых основными являются сопро­тивления, индуктивности и ёмкости. Помимо этих параметров, вводят в рассмотрение еще множество других (например, маг­нитное сопротивление маг­нитной цепи, реактивные сопротивления и проводимости цепи переменного тока, и др.), находящихся в известной связи с ними или имеющих самостоятельное значение.

Задачей расчёта электрической цепи является, в первую очередь, оп­ре­де­ление токов и напряжений ветвей при заданных значениях параметров активных и пассивных элементов схемы цепи.

Для расчёта электрических цепей (точнее, их схем замещения) раз­работано несколько методов, наиболее общими из которых являются метод непосредственного применения законов Кирхгофа, ме­тод узловых напряжений, метод переменных состояния, метод контурных токов.

Примечание.Понятия «электрическая цепь» и «схема электрической цепи» часто отождествляют.

П1.5. Законы Ома и Кирхгофа. Решение задач анализа электромаг­ни­т­ных процессов в известной схеме электрической цепи с заданными параметрами источников энергии и резистивных элементов базируется на применении закона Ома, первого и второго законов Кирхгофа, которые записывают соответственно для ветвей , узлов и контуров (табл. П1.3).

Закон Ома устанавливает зависимость между током и на­пря­жением на пассивной ветви при совпадении направлений тока и напряжения на ней. (см. табл. П1.3, вторая строка). Для ветви с источниками напряжения используют обоб­щенный закон Ома : (см. табл. П1.3, третья строка). Знак плюс перед ЭДС E и напряжением U 12 записывают при совпадении их направлений с условно положительным направлением тока I и знак минус - при не совпадении их направлений с направлением тока.

Первый закон Кирхгофа (1ЗК) записывают для узлов электрической схемы (см. табл. П1.3, четвертая строка). Закон формулируется следующим образом: алгебраическаясумма токов в любом узле схемы цепи равна нулю. При этом токи, направленные к узлу, при­­нято записывать со знаком плюс, а уходящие от уз­ла, со знаком минус.

Второй закон Кирхгофа (2ЗК) применяется к контурам электрической цепи (см. табл. П1.3, пятая строка) и формулируется следующим образом: в лю­бом контуре схемы алгебраическая сумма ЭДС равна ал­ге­браической сум­ме напряжений на всех участках с сопротивлениями, входящими в этот контур. При этом ЭДС и напряжения на элементах контура за­писывают со знаком плюс, если выбран­ное нап­равление обхода контура (например, по ходу часовой стрелки) совпадает с направлением напряжений (токов) на этих элементах, и со знаком минус при несовпадении.

Таблица П1.3. Топологические параметры схем цепей и их описание

J
k
I 2
I 3
Первый закон Кирхгофа (1ЗК) åI k = 0, I 1 - J - I 2 - I 3 = 0 Контур
I 1
Е 2
Е 3
I 2
I 3
R 1
R 3
R 2
U 12
1
2
Второй закон Кирхгофа (2ЗК) åE k = åU k , E 2 - E 3 = R 1 I 1 + + R 2 I 2 - R 3 I 3 -U 12

П1.6. Метод расчёта, основанный на законах Кирхгофа . Анализ и расчёт лю­бой электрической цепи постоянного тока можно провести в результате совместного решения системы уравнений, составленных посредством первого и второго законов Кирхгофа. Число уравнений в системе равно числу ветвей в цепи (N МЗК = В ), при этомчисло независимых уравнений, которые можно запи­сать по 1ЗК, на од­но уравнение меньше числа узлов, т. е.

N 1ЗК = У - 1, (1.4)

а число независи­мых уравнений, записываемых по 2ЗК,

N 2ЗК = B - (У - 1), (1.5)

где В - число ветвей с неизвестными токами (без ветвей с источниками тока); У - чи­сло узлов.

Составим посредством законов Кирхгофа необходи­мое число уравнений для определения токов ветвей схемы (рис. П1.2), если заданы ЭДС E 1 и E 2 источников напряжения, ток J источника тока и соп­ротивления R 1 ,…, R 5 резисторов.

N МЗК = N 1ЗК + N 2ЗК = В .

С этой целью:

1. Проведём топологический анализ схемы для определения числа независимых урав­­нений. В схеме B 1 = 6 вет­вей, У = 3 узла. Од­нако в ветви с ИТ ток J задан, поэтому число независимых ветвей В = 5. Число независимых урав­нений для решения задачи по методу законов Кирхгофа

N МЗК = В = 5.


3. Составим уравнения по 1ЗК (N 1ЗК = У - 1 = 3 - 1 = 2):

для узла 1 : I 1 - I 2 - J - I 3 = 0, (1)

для узла 2 : I 3 - I 4 + I 5 = 0. (2)

4. Выберем независимые кон­ту­ры и направление обхода контуров, на­при­­мер, по ходу часовой стре­лки. В на­шем случае имеется три независимых контура, так как ветвь с заданным током J ИТ в уравнениях, составляемых по2ЗК, не учитывается:

N 2ЗК = B - (У - 1) = 5 – (3 – 1) = 3.

5. Составим три уравнения по 2ЗК:

для контура 1"-1-0-1" : E 1 = R 1 I 1 + R 2 I 2 , (3)

для контура 1-2-0-1 : 0 = R 3 I 3 + R 4 I 4 - R 2 I 2 , (4)

для контура 2-2"-0-2 : -E 2 = -R 5 I 5 - R 4 I 4 . (5)

6. Решив систему уравнений (1)…(5), например, методом Гаусса или с использованием формул Крамера можно определить все неизвестные токи ветвей цепи.

П1.6. Структурные преобразования схем замещения цепей. Расчёт элек­трических цепей можно упростить путём преобразованияих схем замещения в более простые и удобные для расчёта. Такие преобразования приводят, как пра­вило, к уменьшению числа узлов схемы и, следовательно, необходимого числа исходных уравнений для расчёта.

Так, ветвь с последовательно соединёнными резисторами R 1 , R 2 , … , R n может быть преобразована в простую схему с одним резистивным эле­ментом (рис. П1.4а ), эквивалентное сопротивление которого равно сумме сопротивлений:

а ветвь с несколькими последовательно соединёнными источниками напряжения и резисторами (рис. П1.4б ) также может быть преобра­зована в ветвь с одним эквивалентным ИН с параметрами R э и Е э (рис. П1.4в ):

1
б )
R 1
а )
в )
Рис. П1.4
1
2
R э
R 1
R 2
R n
1
2
R 2
R 3
R э
E 1
E 2
E 3
E э
1
2
2
2
U
Рис. П1.5
R 1
R 2
U
G э
а )
б )
1
2
R n
1
I 1
I n
I 2
I
I

Параллельно соединённые резисторы с сопротивлениями R 1 , R 2 ,…, R n (рис. П1.5а ) можно заменить одним резистором с проводимостью G э (рис. П1.5б ).

Так как напряжение на всех ветвях одно и тоже, равное U , то токи ветвей

где , - проводимости ветвей в сименсах.

В схеме с двумя узлами 1 и 2 (см. рис. П1.5а ) ток на входе цепи

а эквивалентная про­водимость и эквивалентное сопротивление пассивного участка цепи между узлами 1 и 2 равны

3
2
U
Рис. П1.6
R 2
R 1
R 3
U
R 1
U
R 1-4
R 2-4
а )
б )
в )
1
2
3
R 4
1
1
3

Электрические схемы, имеющие сочетание последовательного и параллельного соединений участков цепи (смешанное соединение ), могут быть преобразованы в более простые эквивалентные схемы путём замены параллельных ветвей одной ветвью, а последовательно соединённые участки цепи – одним участком. Так, например, для схемы рис. П1.6а вначале нужно найти эквивалентное сопротивление параллельного участка 2 -3 с тремя параллельно включенными резисторами

а затем сложить его с сопротивлением R 1 (рис. П1.6б , в ):

В электрических цепях элементы могут быть соединены по схеме треугольник или по схеме звезда (рис. П1.7).Треугольником называют соединение трёх элементов, в котором конец первого элемента со­еди­нён с началом вто­рого, конец второго с началом третьего, а конец тре­тьего с началом первого (рис. П1.7а ). Звездой называют соединение, в котором кон­­цы трёх элементов со­единены в одну общую точ­ку п (рис. П1.7б ).

Рис. П1.7
б )
1
2
I 2
R 3
R 1
R 2
3
I 3
I 1
I 1
а )
1
2
3
I 2
I 3
R 1 2
R 23
R 31
n

С целью умньшения числа узлов в схеме цепи соединения элементов треугольником преобразуют в эквивалентное соединение звездой посредством сле­­­ду­ющих формул:

, , (1.10)

т. е.сопротивление луча эквивалентной звезды равно дроби, в числителе которой произведение двух сопротивлений сторон треугольника, примыкающих к рассматриваемому узлу, делённому на сумму всех сопротивлений сторон треугольника.

П1.7. Правило делителя напряжения. В ветви, состоящей их двух после­дова­те­льно соединённых резисторов (рис. П1.8а ),напряжение на одном из резисторов равно при­ложенному к ветви напряжению, умноженному на сопротивление данного резистора и делённому на сумму сопротивлений обоих резисторов, т. е.

U
б )
R 1
R 2
а )
U 1
U 2
I 2
R 2
I 1
U
Рис. П1.8
R 1
I

и (1.11)

П1.8. Правило делителя тока . Для цепи с двумя параллельно соеди­нёнными резисторами (рис. П1.8б ) ток одной из двух параллельных ветвей цепи равен подходящему к разветвлению току I , ум­ноженному на сопро­тивление другой (противоположной) ве­тви и делён­ному на сумму соп­ротивлений обеих ветвей, т.е.

П1.9. Метод узловых напряжений. Метод узловых напряжений (МУН) базируется на первом законе Кирхгофа и обобщенном законе Ома. В нём за вспомогательные расчётные величины принимают так называемые узловые напряжения U k 0 - напряжения между каждым k -м узлом схемы и выбранным базисным узлом (его будем обозначать цифрой 0 ), потенциал которого принимают равным нулю. Число уравнений для расчёта схемы по МУН

N МУН = У - 1. (1.13)

Для каждого узла, кроме базисного, составляют уравнение по 1ЗК. В полученных уравнениях токи ветвей, присоединённых к базисному узлу, выражают через узловые напряжения и проводимости посредством обобщённого закона Ома:

где G k = 1/R k - проводимость k -й ветви.

Токв ветви, подключённой к узлам k и j ,

= (E kj - U k 0 + U j 0 )G kj , (1.15)

где U kj = U k 0 - U j 0 межузловое напряжение; G kj = 1/R kj - меж­узловая про­водимость.

После группирования членов при соответствующих узловых напряжениях и переноса E k G k и токов J k источников тока в правую часть, получают систему уравнений относительно неизвестных узловых напряжений.

Структура каждого уравнения одинаковая, например, уравнение относительно узла 1 :

G 11 U 10 - G 12 U 20 - ... - G 1n U n 0 = + (1.16)

где G 11 = G 1 + G 2 + ... + G n - собственная проводимость узла1 , равная сумме проводимостей ветвей, присоединённых к узлу 1 (проводимости ветвей с ИТ не учитываются, так как G j = 1/R j = 0 (R j = ¥)); G 12 , ... , G 1 n – меж­узловые проводимости; + - узловой ток узла 1 ; - алгебраическая сумма произведений ЭДС ветвей, присоединённых к узлу 1 , на проводимости этих ветвей, причём со знаком плюс (минус) записывают произведения, если ЭДС направлена к узлу 1 (от узла 1 ); - алгебраическая сумма токов источников тока ветвей, подключённых к узлу 1 , причём токи J k записывают со знаком плюс (минус), если они направлены к узлу 1 (от узла 1 ).

Решив систему уравнений относительно узловых напряжений, определяют межузловые напряжения и токи ветвей посредством соотношений (1.14) и (1.15).

Рис. П1.9
2
I 1
R 1
R 3
R 5
R 2
R 4
I 2
J
I 3
U 10
E 5
I 4
I 5
1
0
E 1
U 12
U 20

Пример П1.1. Пользуясь методом узловых напряжений, определить токи ветвей схе­мы (рис. П1.10), если E 1 = 12В, E 5 = 15В, J = 2А, R 1 = 1 Ом, R 2 = 5 Ом, R 3 = = R 4 = 10Ом, R 5 = 1 Ом. В схеме 6 ветвей и 3 узла.

Решение. 1. Выбираем базисный узел 0 и направления узловых напряжений U 10 и U 20 от узлов 1 и 2 к базисному (см. рис. П1.9).

2. Составляем (N МУН = У - 1 = 3 - 1 = 2) уравнения по МУН:

для узла 1 : G 11 U 10 - G 12 U 20 = E 1 G 1 - J ,

для узла 2 : -G 21 U 10 + G 22 U 20 = E 5 G 5 ,

где G 11 = G 1 + G 2 + G 3 , G 12 = G 3 = 1/R 3 , G 22 = G 3 + G 4 + G 5 , G 21 = G 12 = G 3 .

3. После подстановки числовых значений (G 1 = 1/R 1 = 1 См, G 2 = 0,2 См, G 3 = G 4 = = 0,1 См, G 5 = 1 См) имеем:

1,3U 10 - 0,1U 20 = 12 - 2 = 10,

0,1U 10 + 1,2U 20 = 15.

4. Воспользовавшись форму­­лами Крамера, находим узловые нап­ря­жения:

Примечание. Вычисление узловых напряжений нужно проводить с большой точностью. В данном примере достаточно округлить четвёртый знак после запятой.

5. Межузловое напряжение

U 12 = U 10 - U 20 = 8,7097 - 13,226 = - 4,5163 B.

6. Искомые токи ветвей (см. выбранные направления токов ветвей на рис. П1.9):

I 1 = (E 1 - U 10)G 1 = 3,29 A, I 2 = U 10 G 2 = 1,754 A,

I 3 = U 12 G 3 = - 0,452 A, I 4 = U 20 G 4 = 1,323 A,

I 5 = (-E 5 + U 20)G 5 = -1,774 A.

7. Проверим результаты расчёта токов. Согласно 1ЗК для узла 2 :

= I 3 - I 4 - I 5 = - 0,452 - 1,323 + 1,774 = 0.

П1.10. Метод двух узлов . Метод двух узлов является частным случаем метода узловых напряжений и применяется для расчёта схем, содержащих (после преобразования) два узла и произвольное число параллельных пассивных и активных ветвей. Для расчёта токов ветвей цепи составляют и решают одно уравнение узлового напряжения , равное алгебраической сумме токов, создаваемыхвсеми источниками напряжения и источниками тока цепи, делённой на собственную проводимость узла , т. е.

а токи ветвей определяют по обобщённому закону Ома (см. (1.14)).

Пример П1.2. Упростить схему цепи (рис. П1.10а ) посредством преобразования пас­сивного треугольника в эквивалентную звезду и найти токи в преобразованной схеме метотом двух узлов. Токи ветвей пассивного треугольника исходной схемы найти из составленных уравнений 1ЗК для узлов треугольника и (при необходимости) уравнения 2ЗК для контура, в который входит одна из ветвей треугольника с искомым током. Параметры схемы замещения цепи: E 5 = 20 В, E 6 = 36 В; R 1 = 10 Ом, R 2 = 12 Ом, R 3 = 4 Ом, R 4 = 8 Ом, R 5 = 6 Ом, R 6 = 5 Ом.

Решение. 1. Обозначим узлы и пунктирными линиями лучи (ветви) эквивалентной звезды R 1 n , R 2 n , R 3 n (рис. П1.10б ), равные (см. (1.10))

2. В результате преобразований получили схему с двумя узлами: n и 4 (рис. П1.11), в которой узлы исходной схемы 1 , 2 и 3 стали соединениями.

3. Расчет схемы (рис. П1.11) методом двух узлом проведем в три этапа:

а ) выбираем базисный узел 4 и приравниваем его потенциал нулю (j 4 = 0);

а ) б ) Рис. П1.10. Расчетные схемы цепи

б) направим узловое напряжение U n 4 от узла n к узлу 4 и найдем его значение (см. (П1.11):

Введение....................................................................................... 4

1 Раздел 1. Расчет сложной электрической цепи постоянного тока 5

1.1 Расчет токов по законам Кирхгофа................................... 5

1.2 Замена треугольника сопротивлений эквивалентной звездой...................................................................................................... 6

1.3 Расчет методом «Контурных токов»................................. 8

1.4 Баланс мощностей электрической цепи............................ 9

1.5 Расчет потенциалов точек электрической цепи.............. 10

2 Раздел 2. Расчет и анализ электрической цепи переменного тока 12

2.1 Расчет токов комплексным методом............................... 12

2.2 Определение активной мощности ваттметра.................. 14

2.3 Баланс активной и реактивной мощностей..................... 14

2.4 Векторная диаграмма токов............................................. 14

3 Раздел 3. Расчет трехфазной электрической цепи................ 15

3.1 Расчет фазных и линейных токов.................................... 15

3.2 Мощности трехфазной электрической цепи................... 16

3.3 Векторная диаграмма токов и напряжений..................... 17

4 Раздел 4. Расчет трехфазного асинхронного двигателя....... 18

Заключение................................................................................. 23

Список использованной литературы......................................... 24


Введение

Электротехника как наука является областью знаний, в которой рассматриваются электрические и магнитные явления и их практическое использование. На базе электротехники начали развиваться электроника, радиотехника, электропривод и другие смежные науки.

Электрическая энергия применяется во всех областях человеческой деятельности. Производственные установки на предприятиях имеют в основном электрический привод, т.е. приводят в действия электрические двигатели. Для измерения электрических и неэлектрических величин широко применяются электрические приборы и устройства.

Непрерывно расширяющиеся использование различных электротехнических и электронных устройств обуславливает необходимость знаниями специалистами всех областей науки, техники и производство основных понятий об электрических и электромагнитных явлений и их практическое применение.

Знание студентами данной дисциплины обеспечит их плодотворную деятельность в будущем как инженеров при современном состоянии энерговооруженности предприятий.

В результате полученных знаний инженер неэлектротехнических специальностей должен уметь квалифицированно эксплуатировать электротехническое и электронное оборудование и электропривод, применяемые в условиях современного производства, знать путь и методы экономии электроэнергии.

РАЗДЕЛ 1. РАСЧЕТ СЛОЖНОЙ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ ПОСТОЯННОГО ТОКА

Параметры схемы приведены в таблице 1.

Таблица 1 – Параметры схемы электрической цепи.

ЭДС источника питания 1 (E 1)

ЭДС источника питания 2 (E 2)

ЭДС источника питания 3 (E 3)

Внутреннее сопротивление источника питания (R 01)

Внутреннее сопротивление источника питания (R 02)

Внутреннее сопротивление источника питания (R 03)

Сопротивление резистора 1 (R 1)

Сопротивление резистора 2 (R 2)

Сопротивление резистора 3 (R 3)

Сопротивление резистора 4 (R 4)

Сопротивление резистора 5 (R 5)

Сопротивление резистора 6 (R 6)

1.1 Расчет токов по законам Кирхгофа

Показываем на схеме направление токов в ветвях (рис. 1).

Согласно первому закону Кирхгофа для цепей постоянного тока алгебраическая сумма токов в любом узле электрической цепи равна нулю, т.е. сумма токов, направленных от узла, равна сумме токов, направленных к узлу.

Составляем уравнения по первому закону Кирхгофа для узлов, количество которых равно (n–1), где n – количество узлов в схеме:

А) +I 1 + I 3 – I 2 = 0; (1.1)

B) I 4 + I 6 – I 3 = 0; (1.2)

D) I 5 – I 1 – I 4 = 0. (1.3)

Согласно второму закону Кирхгофа для цепей постоянного тока в любом замкнутом контуре алгебраическая сумма напряжений на резистивных элементах равна алгебраической сумме ЭДС.

Составляем уравнения по второму закону Кирхгофа для каждого контура:

I) I 3 ∙ (R 3 + R 03) – I 1 ∙ (R 1 + R 01) + I 4 ∙ R 4 = E 3 – E 1 ; (1.4)

II) I 1 ∙ (R 1 + R 01) + I 2 ∙ (R 2 + R 02) + I 5 ∙ R 5 = E 1 + E 2 ; (1.5)

III) I 6 ∙ R 6 – I 4 ∙ R 4 – I 5 ∙ R 5 = 0. (1.6)

Решаем все полученные уравнения совместно как систему, подставив все известные значения:

=> (1.7)

Решив матрицу, получим неизвестные значения токов в ветвях:

I 1 = – 0,615 А;

Если ток в ветви оказался отрицательным, значит, его направление противоположно выбранному на схеме.

1.2 Замена треугольника сопротивлений эквивалентной звездой

Проведем преобразование «треугольника» bcd, соответствующего схеме электрической цепи, в эквивалентную «звезду» (рис. 2). Исходный треугольник образован сопротивлениями R 4 , R 5 , R 6 . При преобразовании обязательно сохраняется условие эквивалентности схем, т.е. токи в проводах, проходящих к преобразуемой схеме, и напряжения между узлами не меняют своих величин.

При преобразовании «треугольника» в «звезду» используем расчетные формулы:

Ом. (1.10)

В результате преобразования исходная схема упрощается (рис. 3).

В преобразованной схеме только три ветви и соответственно три тока I 1 , I 2 , I 3 . Для расчета этих токов достаточно иметь систему трех уравнений, составленных по законам Кирхгофа:

(1.11)

При составлении уравнений направление тока и обхода контуров выбирается так же, как и в трехконтурной схеме.

Составляем и решаем систему:

(1.12)

Решив матрицу, получим неизвестные значения токов I 1 , I 2 , I 3:

I 1 = –0,615 А;

Подстановкой полученных значений токов в уравнения, составленные для трехконтурной схемы, определим остальные токи I 4 , I 5 , I 6:

1.3 Расчет методом «Контурных токов»

Произвольно задаемся направлением контурных токов в ячейках исходной схемы. Удобнее все токи указать в одном направлении – по часовой стрелке