Числовое обозначение дискретных элементов на плате. Обозначение электрических элементов на схемах. Характеристикой радиокомпонента являются

Позиционные обозначения

Это специальные буквенные индексы элементов, их групп, блоков, истройств, идентифицирующие их на схеме. Чтобы однозначно указывать на конкретный элемент эти обозначения делаются уникальными в пределах схемы.

Эти индексы в большинстве случаев имеют вид, вроде: R1, DA7, HL5, где буква (буквы) обозначают категорию обозначаемого (R - резистор, DA - микроcхема аналоговая и пр.), а цифры - номер в схеме по порядку (например, R1, R2, R3... - резисторы на схеме).

Также широко используются иерархические обозначения, состоящие из нескольких групп букв и цифр, иногда разделяемых другими знаками:

DD2.1 - цифровая микросхема номер 2, элемент 1 (по ГОСТу);
A2C7 - блок (например, плата) номер 2, конденсатор 7 (также по ГОСТу);
U2A - микросхема 2, элемент A (преим. американские обозначения).

Позиционные обозначения в рамках регулируются ГОСТ 2.710-81 pdf

Вкратце, позиционное обозначение в ЕСКД состоит из следующих частей:

Обозначения устройства (вида =NANA);
обозначения функциональной группы (вида #NANA);
конструктивного обозначения (вида +NANA), вышеперечисленные элементы отделяются от последующих символом тире (-);
вида и номера элемента (вида AN; A - вид, N - номер);
функции (вида A);
обозначения контакта (вида:NANA);
адресного обозначения (в скобках).

Из которых только вид и номер элемента явдяются обязательным.

В качестве обозначений типов элементов используются буквы или последовательности букв, в которых первая (или единственная) буква - класс прибора, а остальные уточняют функциональную или конструктивную группу. Уточняющие буквы могут опускаться (например, можно цифровые микросхемы обозначать как Dn, вместо DAn).

A Устройство (общее обозначение)
AA Регулятор тока
AK Блок реле
B Преобразователи неэлектрических величин в электрические (кр. генераторов и источников питания) или наоборот, аналоговые или многоразрядные преобразователи и датчики для указания и измерения
BA Громкоговоритель
BB Магнитострикционный элемент
BD Детектор ионизирующих излучений
BE Сельсин-приёмник
BF Телефон (капсюль)
BC Сельсин-датчик
BK Тепловой датчик
BL Фотоэлемент
BM Микрофон
BP Датчик давления
BQ Пьезоэлемент
BR Датчик частоты вращения (тахогенератор)
BS Звукосниматель
BV Датчик скорости
C Конденсаторы
CB Батарея конденсаторов силовая
CG Блок конденсаторов зарядный
D Схемы интегральные, микросборки
DA Схема интегральная аналоговая
DD Схема интегральная цифровая
DS Устройства хранения информации
DT Устройство задержки
E Элементы разные
EK Нагревательный элемент
EL Лампа осветительная
ET Пиропатрон
F Разрядники, предохранители, устройства защитные
FA Дискретный элемент защиты по току мгновенного действия
FP Дискретный элемент защиты по току инерционного действия
FU Предохранитель плавкий
FV Дискретный элемент защиты по напряжению, разрядник
G Генераторы, источники питания
GB Батарея
GC Синхронный компенсатор
GE Возбудитель генератора
H Устройства индикаторные и сигнальные
HA Прибор звуковой сигнализации
HG Индикатор символьный
HL Индикатор световой сигнализации
HLA Табло сигнальное
HLG Лампа сигнальная зелёная
HLR Лампа сигнальная красная
HLW Лампа сигнальная белая
HV Индикаторы ионные и полупроводниковые
K Реле, контакторы, пускатели
KA Реле токовое
KCC Реле команды включения
KCT Реле команды отключения
KH Реле указательное
KK Реле электротепловое
KL Реле промежуточное
KM Контактор, магнитный пускатель
KT Реле времени
KV Реле напряжения
L Катушки индуктивности, дроссели
LL Дроссель электролюминесцентного освещения
LM Обмотка возбуждения электродвигателя
M Двигатели
MA Электродвигатели
P Приборы, измерительное оборудование
PA Амперметр
PC Счётчик импульсов
PE Применять не допускается
PF Частотомер
PI Счётчик активной энергии
PK Счётчик реактивной энергии
PR Омметр
PS Регистрирующий прибор
PT Часы, измеритель времени действия
PV Вольтметр
PW Ваттметр
Q Выключатели и разъединители в силовых цепях
QF Выключатель автоматический
QK Короткозамыкатель
QS Разъединитель
R Резисторы
RK Терморезистор
RP Потенциометр
RR Реостат
RS Шунт измерительный
RU Варистор
S Устройства коммутации в цепях управления, сигнализации и измерительных
SA Выключатель или переключатель
SB Выключатель кнопочный
SF Выключатель кнопочных (для аппаратов, не имеющих контактов силовых цепей)
SL Выключатель, срабатывающий от уровня
SP - от давления
SQ - от положения (путевой)
SR - от частоты вращения
SK - от температуры
T Трансформаторы, автотрансформаторы
TA Трансформатор тока
TS Электромагнитный стабилизатор
TV Трансформатор напряжения
U Устройства связи, преобразователи электрических величин в электрические
UB Модулятор
UF Преобразователь частоты
UG Блок питания
UI Дискриминатор
UR Демодулятор
UZ Преобразователь частотный, инвертор, генератор частоты, выпрямитель
V Приборы электровакуумные и полупроводниковые
VD Диод, стабилитрон
VL Прибор электровакуумный
VT Транзистор
VS Тиристор
W Линии и элементы СВЧ, антенны
WA Антенна
WE Ответвитель
WK Короткозамыкатель
WS Вентиль
WT Трансформатор, неоднородность, фазовращатель
WU Аттенюатор
X Соединения контактные
XA Токосъёмник, контакт скользящий
XP Штырь
XS Гнездо
XT Соединение разборное
XW Соединитель высокочастотный
Y Устройства механические с электромагнитным приводом
YA Электромагнит
YAB Замок электромагнитный
YB Тормоз с электромагнитным приводом
YC Муфта с электромагнитным приводом
YH Электроманитный патрон или плита
Z Устройства оконечные, ограничители, фильтры
ZL Ограничитель
ZQ Фильтр кварцевый

Зарубежные обозначения (Reference designators)

В отличие от отечественных, у зарубежных обозначений многие буквенные обозначения типов отличаются.

Здесь приведён список распространённых зарубежных обозначений.

AE Антенна
AT Аттенюатор
BR Мостовой выпрямитель
B, BT Батарея
C Конденсатор
CN Конденсаторная сборка
CRT Кинескоп
D, CR Диод (Включая стабилитроны, тиристоры и светодиоды)
DL Линия задержки
DS Дисплей
DSP Цифровой сигнальный процессор
F Предохранитель
FB or FEB Ферритовое кольцо (для фильтрации ВЧ-помех)
FD Fiducial
FET Полевой транзистор
GDT Газоразрядная лампа
IC Микросхема (также U)
J Гнездо
J, JP Перемычка (джампер)
JFET Однопереходный полевой транзистор
K Реле
L Индуктивность
LCD ЖК-дисплей
LDR Фоторезистор
LED Светодиод
LS Громкоговоритель, излучатели звука (пищалки)
M Электродвигатель
MCB Размыкатель
MK, Mic Микрофон
MOSFET МОП-транзистор
MP Механические детали (крепёж и т. п.)
Ne Неоновая лампа
OP Операционный усилитель
P Штекер
PCB Печатная плата
PS Источник питания
PU Звукосниматель
Q Транзистор (все виды, также Tr)
R Резистор
RLA, RY Реле (также K)
RN Резисторная сборка
RT Термистор (также TH)
RV Варистор
S Приборы коммутации
SCR Тиристор
SW Переключатель
T Трансформатор
TC Термопара
TUN Тюнер
TFT TFT-дисплей
TH Термистор (также RT)
TP Тестовая точка
Tr Транзистор (все виды, также Q)
U Микросхема (также IC)
V Радиолампа
VC Переменный конденсатор
VFD Газоразрядный дисплей
VLSI very large scale integration
VR Переменный резистор
X Преобразователи, не включаемые в другие категории
X Кварцевый, керамический резонатор (также Y)
XMER Трасформатор
XTAL Кварцевый резонатор
Y Кварцевый, керамический резонатор (также X)
Z, ZD Стабилитрон

Исторические

До введения ГОСТ в СССР использовались также обозначения с применением кириллицы (за исключеним R, C, L).

А антенна
Б гальванический элемент, аккумулятор, батарея
Вк выключатель
Г генератор
Гр громкоговоритель
Д полупроводниковый диод
Др дроссель
Зв звукосниматель
Л радиолампа
М микрофон
НЛ неоновая лампа
П переключатель
Р реле
Т транзистор
Тл головной телефон
Тр трансформатор
ТС термистор
ФЭ фотоэлемент
R резистор
C конденсатор
L индуктивность

При изготовлении радиоэлектронных устройств, у начинающих радиолюбителей могут возникнуть трудности с расшифровкой обозначений на схеме различных элементов. Для этого был составлен небольшой сборник самых часто встречающихся условных обозначений радиодеталей. Следует учесть, что здесь приводится исключительно зарубежный вариант обозначения и на отечественных схемах возможны отличия. Но так как большинство схем и деталей импортного происхождения - это вполне оправдано.

Резистор на схеме обозначается латинской буквой "R", цифра - условный порядковый номер по схеме. В прямоугольнике резистора может быть обозначена номинальная мощность резистора - мощность, которую он может долговременно рассеивать без разрушения. При прохождении тока на резисторе рассеивается определенная мощность, которая приводит к нагреву последнего. Большинство зарубежных и современных отечественных резисторов маркируется цветными полосами. Ниже приведена таблица цветовых кодов.


Наиболее часто встречающаяся система обозначений полупроводниковых радиодеталей - европейская. Основное обозначение по этой системе состоит из пяти знаков. Две буквы и три цифры - для широкого применения. Три буквы и две цифры - для специальной аппаратуры. Следующая за ними буква обозначает разные параметры для приборов одного типа.

Первая буква - код материала:

А - германий;
В - кремний;
С - арсенид галлия;
R - сульфид кадмия.

Вторая буква - назначение:

А - маломощный диод;
В - варикап;
С - маломощный низкочастотный транзистор;
D - мощный низкочастотный транзистор;
Е - туннельный диод;
F - маломощный высокочастотный транзистор;
G - несколько приборов в одном корпусе;
Н - магнитодиод;
L - мощный высокочастотный транзистор;
М - датчик Холла;
Р - фотодиод, фототранзистор;
Q - светодиод;
R - маломощный регулирующий или переключающий прибор;
S - маломощный переключательный транзистор;
Т - мощный регулирующий или переключающий прибор;
U - мощный переключательный транзистор;
Х - умножительный диод;
Y - мощный выпрямительный диод;
Z - стабилитрон.

Чтобы понять, что конкретно нарисовано на схеме или чертеже, необходимо знать расшифровку тех значков, которые на ней есть. Это распознавание еще называют чтением чертежей. А чтоб облегчить это занятие почти все элементы имеют свои условные значки. Почти, потому что стандарты давно не обновлялись и некоторые элементы рисуют каждый как может. Но, в большинстве своем, условные обозначения в электрических схемах есть в нормативны документах.

Условные обозначения в электрических схемах: лампы,трансформаторы, измерительные приборы, основная элементная база

Нормативная база

Разновидностей электрических схем насчитывается около десятка, количество различных элементов, которые могут там встречаться, исчисляется десятками если не сотнями. Чтобы облегчить распознавание этих элементов, введены единые условные обозначения в электрических схемах. Все правила прописаны в ГОСТах. Этих нормативов немало, но основная информация есть в следующих стандартах:

Изучение ГОСТов дело полезное, но требующее времени, которое не у всех есть в достаточном количестве. Потому в статье приведем условные обозначения в электрических схемах — основную элементную базу для создания чертежей и схем электропроводки, принципиальных схем устройств.

Некоторые специалисты внимательно посмотрев на схему, могут сказать что это и как оно работает. Некоторые даже могут сразу выдать возможные проблемы, которые могут возникнуть при эксплуатации. Все просто — они хороша знают схемотехнику и элементную базу, а также хорошо ориентируются в условных обозначениях элементов схем. Такой навык нарабатывается годами, а, для «чайников», важно запомнить для начала наиболее распространенные.

Электрические щиты, шкафы, коробки

На схемах электроснабжения дома или квартиры обязательно будет присутствовать обозначение или шкафа. В квартирах, в основном устанавливается там оконечное устройство, так как проводка дальше не идет. В домах могут запроектировать установку разветвительного электрошкафа — если из него будет идти трасса на освещение других построек, находящихся на некотором расстоянии от дома — бани, гостевого дома. Эти другие обозначения есть на следующей картинке.

Если говорить об изображениях «начинки» электрических щитков, она тоже стандартизована. Есть условные обозначения УЗО, автоматических выключателей, кнопок, трансформаторов тока и напряжения и некоторых других элементов. Они приведены следующей таблице (в таблице две страницы, листайте нажав на слово «Следующая»)

Номер Название Изображение на схеме
1 Автоматический выключатель (автомат)
2 Рубильник (выключатель нагрузки)
3 Тепловое реле (защита от перегрева)
4 УЗО (устройство защитного отключения)
5 Дифференциальный автомат (дифавтомат)
6 Предохранитель
7 Выключатель (рубильник) с предохранителем
8 Автоматический выключатель со встроенным тепловым реле (для защиты двигателя)
9 Трансформатор тока
10 Трансформатор напряжения
11 Счетчик электроэнергии
12 Частотный преобразователь
13 Кнопка с автоматическим размыканием контактов после нажатия
14 Кнопка с размыканием контактов при повторном нажатии
15 Кнопка со специальным переключателем для отключения (стоп, например)

Элементная база для схем электропроводки

При составлении или чтении схемы пригодятся также обозначения проводов, клемм, заземления, нуля и т.д. Это то, что просто необходимо начинающему электрику или для того чтобы понять, что же изображено на чертеже и в какой последовательности соединены ее элементы.

Номер Название Обозначение электрических элементов на схемах
1 Фазный проводник
2 Нейтраль (нулевой рабочий) N
3 Защитный проводник ("земля") PE
4 Объединенные защитный и нулевой проводники PEN
5 Линия электрической связи, шины
6 Шина (если ее необходимо выделить)
7 Отводы от шин (сделаны при помощи пайки)

Пример использования приведенных выше графических изображений есть на следующей схеме. Благодаря буквенным обозначениям все и без графики понятно, но дублирование информации в схемах никогда лишним не было.

Изображение розеток

На схеме электропроводки должны быть отмечены места установки розеток и выключателей. Типов розеток много — на 220 В, на 380 в, скрытого и открытого типа установки, с разным количеством «посадочных» мест, влагозащищенные и т.д. Приводить обозначение каждой — слишком длинно и ни к чему. Важно запомнить как изображаются основные группы, а количество групп контактов определяется по штрихам.

Обозначение розеток на чертежах

Розетки для однофазной сети 220 В обозначаются на схемах в виде полукруга с одним или несколькими торчащими вверх отрезками. Количество отрезков — количество розеток на одном корпусе (на фото ниже иллюстрация). Если в розетку можно включить только одну вилку — вверх рисуют один отрезок, если два — два, и т.д.

Если посмотрите на изображения внимательно, обратите внимание, что условное изображение, которое находится справа, не имеет горизонтальной черты, которая отделяет две части значка. Эта черта указывает на то, что розетка скрытого монтажа, то есть под нее необходимо в стене сделать отверстие, установить подрозетник и т.д. Вариант справа — для открытого монтажа. На стену крепится токонепроводящая подложка, на нее сама розетка.

Также обратите внимание, что нижняя часть левого схематического изображения перечеркнута вертикальной линией. Так обозначают наличие защитного контакта, к которому подводится заземление. Установка розеток с заземлением обязательна при включении сложной бытовой техники типа стиральной или , духовки и т.д.

Ни с чем не перепутаешь условное обозначение трехфазной розетки (на 380 В). Количество торчащих вверх отрезков равно количеству проводников, которые к данному устройству подключаются — три фазы, ноль и земля. Итого пять.

Бывает, что нижняя часть изображения закрашена черным (темным). Это обозначает что розетка влагозащищенная. Такие ставят на улице, в помещениях с повышенной влажностью (бани, бассейны и т.д.).

Отображение выключателей

Схематическое обозначение выключателей выглядит как небольшого размера кружок с одним или несколькими Г- или Т- образными ответвлениями. Отводы в виде буквы «Г» обозначают выключатель открытого монтажа, с виде буквы «Т» — скрытого монтажа. Количество отводов отображает количество клавиш на этом устройстве.

Кроме обычных могут стоять — для возможности включения/выключения одного источника света из нескольких точек. К такой же небольшой окружности с противоположных сторон пририсовывают две буквы «Г». Так обозначается одноклавишный проходной переключатель.

В отличие от обычных выключателей, в этих при использовании двухклавишных моделей добавляется еще одна планка, параллельная верхней.

Лампы и светильники

Свои обозначения имеют лампы. Причем отличаются лампы дневного света (люминесцентные) и лампы накаливания. На схемах отображается даже форма и размеры светильников. В данном случае надо только запомнить как выглядит на схеме каждый из типов ламп.

Радиоэлементы

При прочтении принципиальных схем устройств, необходимо знать условные обозначения диодов, резисторов, и других подобных элементов.

Знание условных графических элементов поможет вам прочесть практически любую схему — какого-нибудь устройства или электропроводки. Номиналы требуемых деталей иногда проставляются рядом с изображением, но в больших многоэлементных схемах они прописываются в отдельной таблице. В ней стоят буквенные обозначения элементов схемы и номиналы.

Буквенные обозначения

Кроме того, что элементы на схемах имеют условные графические названия, они имеют буквенные обозначения, причем тоже стандартизованные (ГОСТ 7624-55).

Название элемента электрической схемы Буквенное обозначение
1 Выключатель, контролер, переключатель В
2 Электрогенератор Г
3 Диод Д
4 Выпрямитель Вп
5 Звуковая сигнализация (звонок, сирена) Зв
6 Кнопка Кн
7 Лампа накаливания Л
8 Электрический двигатель М
9 Предохранитель Пр
10 Контактор, магнитный пускатель К
11 Реле Р
12 Трансформатор (автотрансформатор) Тр
13 Штепсельный разъем Ш
14 Электромагнит Эм
15 Резистор R
16 Конденсатор С
17 Катушка индуктивности L
18 Кнопка управления Ку
19 Конечный выключатель Кв
20 Дроссель Др
21 Телефон Т
22 Микрофон Мк
23 Громкоговоритель Гр
24 Батарея (гальванический элемент) Б
25 Главный двигатель Дг
26 Двигатель насоса охлаждения До

Обратите внимание, что в большинстве случаев используются русские буквы, но резистор, конденсатор и катушка индуктивности обозначаются латинскими буквами.

Есть одна тонкость в обозначении реле. Они бывают разного типа, соответственно маркируются:

  • реле тока — РТ;
  • мощности — РМ;
  • напряжения — РН;
  • времени — РВ;
  • сопротивления — РС;
  • указательное — РУ;
  • промежуточное — РП;
  • газовое — РГ;
  • с выдержкой времени — РТВ.

В основном, это только наиболее условные обозначения в электрических схемах. Но большую часть чертежей и планов вы теперь сможете понять. Если потребуется знать изображения более редких элементов, изучайте ГОСТы.

Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео

Графическое обозначение радиодеталей на схемах. Обозначение радиодеталей на схеме и их название

Обозначение радиоэлементов. Фото и названия

Обозначение Название Фото Описание
Заземление Защитное заземление - обеспечивает защиту людей от поражений электрическим током в электроустановках.
Батарейка - гальванический элемент в котором происходит преобразование химической энергии в электрическую энергию.
Солнечная батарея служит для преобразования солнечной энергии в электрическую энергию.
Вольтметр - измерительный прибор для определения напряжения или ЭДС в электрических цепях.
Амперметр - прибор для измерения силы тока, шкалу градуируют в микроамперах или в амперах.
Выключатель - коммутационный аппарат, предназначенный для включения и отключения отдельных цепей или электрооборудования.
Тактовая кнопка - коммутационный механизм, замыкающий электрическую цепь пока есть давление на толкатель.
Лампы накаливания общего назначения, предназначены для внутреннего и наружного освещения.
Мотор (двигатель) - устройство, преобразующее электроэнергию в механическую работу (вращение).
Пьезодинамики (пьезоизлучатели) используют в технике для оповещения какого-либо происшествия или события.
Резистор - пассивный элемент электрических цепей, обладающий определенным значением электрического сопротивления.
Переменный резистор предназначен для плавного изменения тока, посредством изменения собственного сопротивления.
Фоторезистор Фоторезистор – это резистор, электрическое сопротивление которого изменяется под влиянием световых лучей (освещения).
Термистор Терморезисторы или термисторы - полупроводниковые резисторы с отрицательным температурным коэффициентом сопротивления.
Предохранитель - электрический аппарат, предназначенный для отключения защищаемой цепи посредством разрушения.
Конденсатор служит для накопления заряда и энергии электрического поля. Конденсатор быстро заряжается и разряжается.
Диод обладает различной проводимостью. Назначение диода - проводить электрический ток в одном направлении.
Светодиод (LED) - полупроводниковый прибор, создающий оптическое излучение при пропускании электричества.
Фотодиод - приемник оптического излучения, преобразующий свет в электрический заряд за счет процесса в p-n-переходе.
Тиристор - это полупроводниковый ключ, т.е. прибор, назначение которого состоит в замыкании и размыкании цепи.
Назначение стабилитрона - стабилизация напряжения на нагрузке, при изменяющемся напряжении во внешней цепи.
Транзистор - полупроводниковый прибор, предназначенный для усиления электрического тока и управления им.
Фототранзистором называют полупроводниковый транзистор, чувствительный к облучающему его световому потоку (освещению).

xn--18-6kcdusowgbt1a4b.xn--p1ai

Начинающим о радиодеталях | Мастер Винтик. Всё своими руками!

Для того, чтобы собрать схему какие только радиодетали и не понадобятся: резисторы (сопротивления), транзисторы, диоды, конденсаторы и т.п. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на её корпусе, определить цоколёвку. Обо всём об этом и пойдёт речь ниже.

Эта деталь практически встречается в каждой схеме радиолюбительских конструкций. Как правило, самый простой конденсатор - это две металлические пластинки (обкладки) и воздух между ними в качестве диэлектрика. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Через конденсатор постоянный ток не проходит, а вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.

У конденсатора основной параметр - это ёмкость.

Единица ёмкости - микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица - пикофарада (пФ), миллионная доля микрофарады (1 мкф = 1 000 нф = 1 000 000 пф). На схемах вы встретите и ту, и другую единицу. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах или нанофарадах (9н1) , а свыше - в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510, 6800 пФ или n510 (0,51 нф = 510 пф или 6н8 = 6,8 нф = 6800пф). А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад (0,015 мкф = 15 нф = 15 000 пф).

Типы конденсаторов.

Конденсаторы бывают постоянной и переменной емкости.

У переменных конденсаторов ёмкость изменяется при вращении выступающей наружу оси. При этом одна накладка (подвижная) находит на не подвижную не соприкасаясь с ней, в результате увеличивается ёмкость. Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов - подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать. В любительских конструкциях подстроечный конденсатор нередко используют как переменный - он более дешевле и доступнее.

Конденсаторы отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Эта разновидность постоянных конденсаторов - не полярные. Другая разновидность конденсаторов - электролитические (полярные). Такие конденсаторы выпускают большой ёмкости - от десятой доли мкф до несколько десятков мкФ. На схемах для них указывают не только ёмкость, но и максимальное напряжение, на которое их можно использовать. Например, надпись 10,0 x 25 В означает, что конденсатор емкостью 10 мкФ нужно взять на напряжение 25 В.

Для переменных или подстроечных конденсаторов на схеме указывают крайние значения ёмкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 10 - 240 свидетель­ствует о том, что в одном крайнем положении оси емкость конденсатора составляет 10 пФ, а в другом - 240 пФ. При плавном повороте из одного положения в другое ёмкость конденсатора будет также плавно изменяться от 10 до 240 пФ или обратно - от 240 до 10 пФ.

Надо сказать, что эту деталь, как и конденсатор, можно увидеть во многих самоделках. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). На малоомных резисторах большой мощности сверху наматывается нихромовая нить. Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току.

Резисторы бывают постоянные и переменные.

Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных - СП (сопротивление переменное) и СПО (сопротивление переменное объемное). Внешний вид постоянных резисторов показан на рис. ниже.

Резисторы различают по сопротивлению и мощности. Сопротивление, как Вы уже знаете, измеряют в омах (Ом), килоомах (кОм) и мегаомах (МОм). Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.

Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более - до 1 МОм указывают число килоом и ставят рядом букву «к». Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм соответственно. Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм и 4,7 МОм.

В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора. Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Когда же ось поворачивают обратно, происходит обратное явление. Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, телевизорах и т.п.

Полупроводниковые приборы.

Их составляет целая группа деталей: диоды, стабилитроны, транзисторы. В каждой детали использован полупроводниковый материал, или проще полупроводник. Что это такое? Все существующие вещества можно условно разделить на три большие группы. Одни из них - медь, железо, алюминий и другие металлы - хорошо проводят электрический ток - это проводники. Древесина, фарфор, пластмасса совсем не проводят ток. Они непроводники, изоляторы (диэлектрики). Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.

У диода (см. рис. ниже) два вывода: анод и катод. Если подключить к ним батарею полюсами: плюс - к аноду, минус - к катоду, в направлении от анода к катоду потечет ток. Сопротивление диода в этом направлении небольшое. Если же попытаться переменить полюсы батарей, то есть включить диод «наоборот», то ток через диод не пойдет. В этом направлении диод обладает большим сопротивлением. Если пропустить через диод переменный ток, то на выходе мы получим только одну полуволну - это будет хоть и пульсирующий, но постоянный ток. Если переменный ток подать на четыре диода, включенные мостом, то мы получим уже две положительные полуволны.

Эти полупроводниковые приборы также имеют два вывода: анод и катод. В прямом направлении (от анода к катоду) стабилитрон работает как диод, беспрепятственно пропуская ток. А вот в обратном направлении он вначале не пропускает ток (как и диод), а при увеличении подаваемого на него напряжения вдруг «пробивается» и начинает пропускать ток. Напряжение «пробоя» называют напряжением стабилизации. Оно будет оставаться неизменным даже при значительном увеличении входного напряжения. Благодаря этому свойству стабилитрон находит применение во всех случаях, когда нужно получить стабильное напряжение питания какого-то устройства при колебаниях, например сетевого напряжения.

Из полупроводниковых приборов транзистор (см. рис. ниже) наиболее часто применяется в радиоэлектронике. У него три вывода: база (б), эмиттер (э) и коллектор (к). Транзистор - усилительный прибор. Его условно можно сравнить с таким известным вам устройством, как рупор. Достаточно произнести что-нибудь перед узким отверстием рупора, направив широкое в сторону друга, стоящего в нескольких десятках метров, и голос, усиленный рупором, будет хорошо слышен вдалеке. Если принять узкое отверстие за вход рупора-усилителя, а широкое - за выход, то можно сказать, что выходной сигнал в несколько раз больше входного. Это и есть показатель усилительных способностей рупора, его коэффициент усиления.

Сейчас разнообразие выпускаемых радиодеталей очень богатое, поэтому на рисунках показаны не все их типы.

Но вернемся к транзистору. Если пропустить через участок база - эмиттер слабый ток, он будет усилен транзистором в десятки и даже сотни раз. Усиленный ток потечет через участок коллектор - эмиттер. Если транзистор прозвонить мультиметром база-эмиттер и база-коллектор, то он похож на измерение двух диодов. В зависимости от наибольшего тока, который можно пропускать через коллектор, транзис­торы делятся на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-р-п. Так различаются транзисторы с разным чередованием слоев полупроводниковых материалов (если в диоде два слоя материала, здесь их три). Усиление транзистор не зависит от его структуры.

Литература: Б. С. Иванов, «ЭЛЕКТРОННЫЕ САМОДЕЛКИ»


П О П У Л Я Р Н О Е:

>>

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ:

Популярность: 29 094 просм.

www.mastervintik.ru

РАДИОЭЛЕМЕНТЫ

В данном справочном материале приводится внешний вид, наименование и маркировка основных зарубежных радиодеталей - микросхем различных типов, разъёмов, кварцевых резонаторов, катушек индуктивности и так далее. Информация действительно полезная, так как многие хорошо знакомы с отечественными деталями, но с импортными не очень, а ведь именно они ставятся во все современные схемы. Минимальное знание английсого приветствуется, так как все надписи не по русски. Для удобства детали объединены по группам. На первую букву в описании не обращайте внимания, пример: f_Fuse_5_20Glass - означает предохранитель 5х20 миллиметров стеклянный.

Что касается обозначения всех указанных радиоэлементов на электрических принципиальных схемах - смотрите справочную информацию по этому вопросу в другой статье.

Форум по деталям

Обсудить статью РАДИОЭЛЕМЕНТЫ

radioskot.ru

Графические и буквенные обозначения радиодеталей на схемах

AM амплитудная модуляция
АПЧ автоматическая подстройка частоты
АПЧГ автоматическая подстройка частоты гетеродина
АПЧФ автоматическая подстройка частоты и фазы
АРУ автоматическая регулировка усиления
АРЯ автоматическая регулировка яркости
АС акустическая система
АФУ антенно-фидерное устройство
АЦП аналого-цифровой преобразователь
АЧХ амплитудно-частотная характеристика
БГИМС большая гибридная интегральная микросхема
БДУ беспроводное дистанционное управление
БИС большая интегральная схема
БОС блок обработки сигналов
БП блок питания
БР блок развертки
БРК блок радиоканала
БС блок сведения
БТК блокинг-трансформатор кадровый
БТС блокинг-трансформатор строчный
БУ блок управления
БЦ блок цветности
БЦИ блок цветности интегральный (с применением микросхем)
ВД видеодетектор
ВИМ время-импульсная модуляция
ВУ видеоусилитель; входное (выходное) устройство
ВЧ высокая частота
Г гетеродин
ГВ головка воспроизводящая
ГВЧ генератор высокой частоты
ГВЧ гипервысокая частота
ГЗ генератор запуска; головка записывающая
ГИР гетеродинный индикатор резонанса
ГИС гибридная интегральная схема
ГКР генератор кадровой развертки
ГКЧ генератор качающейся частоты
ГМВ генератор метровых волн
ГПД генератор плавного диапазона
ГО генератор огибающей
ГС генератор сигналов
ГСР генератор строчной развертки
гсс генератор стандартных сигналов
гг генератор тактовой частоты
ГУ головка универсальная
ГУН генератор, управляемый напряжением
Д детектор
дв длинные волны
дд дробный детектор
дн делитель напряжения
дм делитель мощности
дмв дециметровые волны
ДУ дистанционное управление
ДШПФ динамический шумопонижающий фильтр
ЕАСС единая автоматизированная сеть связи
ЕСКД единая система конструкторской документации
зг генератор звуковой частоты; задающий генератор
зс замедляющая система; звуковой сигнал; звукосниматель
ЗЧ звуковая частота
И интегратор
икм импульсно-кодовая модуляция
ИКУ измеритель квазипикового уровня
имс интегральная микросхема
ини измеритель линейных искажений
инч инфранизкая частота
ион источник образцового напряжения
ип источник питания
ичх измеритель частотных характеристик
к коммутатор
КБВ коэффициент бегущей волны
КВ короткие волны
квч крайне высокая частота
кзв канал записи-воспроизведения
КИМ кодо-импульсная модуляции
кк катушки кадровые отклоняющей системы
км кодирующая матрица
кнч крайне низкая частота
кпд коэффициент полезного действия
КС катушки строчные отклоняющей системы
ксв коэффициент стоячей волны
ксвн коэффициент стоячей волны напряжения
КТ контрольная точка
КФ катушка фокусирующая
ЛБВ лампа бегущей волны
лз линия задержки
лов лампа обратной волны
лпд лавинно-пролетный диод
лппт лампово-полупроводниковый телевизор
м модулятор
MA магнитная антенна
MB метровые волны
мдп структура металл-диэлектрик-полупроводник
МОП структура металл-окисел-полупроводник
мс микросхема
МУ микрофонный усилитель
ни нелинейные искажения
нч низкая частота
ОБ общая база (включение транзистора по схеме с общей базой)
овч очень высокая частота
ои общий исток (включение транзистора *по схеме с общим истоком)
ок общий коллектор (включение транзистора по схеме с обшим коллектором)
онч очень низкая частота
оос отрицательная обратная связь
ОС отклоняющая система
ОУ операционный усилитель
ОЭ обший эмиттер (включение транзистора по схеме с общим эмиттером)
ПАВ поверхностные акустические волны
пдс приставка двухречевого сопровождения
ПДУ пульт дистанционного управления
пкн преобразователь код-напряжение
пнк преобразователь напряжение-код
пнч преобразователь напряжение частота
пос положительная обратная связь
ППУ помехоподавляющее устройство
пч промежуточная частота; преобразователь частоты
птк переключатель телевизионных каналов
птс полный телевизионный сигнал
ПТУ промышленная телевизионная установка
ПУ предварительный усили^егіь
ПУВ предварительный усилитель воспроизведения
ПУЗ предварительный усилитель записи
ПФ полосовой фильтр; пьезофильтр
пх передаточная характеристика
пцтс полный цветовой телевизионный сигнал
РЛС регулятор линейности строк; радиолокационная станция
РП регистр памяти
РПЧГ ручная подстройка частоты гетеродина
РРС регулятор размера строк
PC регистр сдвиговый; регулятор сведения
РФ режекторный или заграждающий фильтр
РЭА радиоэлектронная аппаратура
СБДУ система беспроводного дистанционного управления
СБИС сверхбольшая интегральная схема
СВ средние волны
свп сенсорный выбор программ
СВЧ сверхвысокая частота
сг сигнал-генератор
сдв сверхдлинные волны
СДУ светодинамическая установка; система дистанционного управления
СК селектор каналов
СКВ селектор каналов всеволновый
ск-д селектор каналов дециметровых волн
СК-М селектор каналов метровых волн
СМ смеситель
енч сверхнизкая частота
СП сигнал сетчатого поля
сс синхросигнал
сси строчный синхронизирующий импульс
СУ селектор-усилитель
сч средняя частота
ТВ тропосферные радиоволны; телевидение
твс трансформатор выходной строчный
твз трансформатор выходной канала звука
твк трансформатор выходной кадровый
ТИТ телевизионная испытательная таблица
ТКЕ температурный коэффициент емкости
тки температурный коэффициент индуктивности
ткмп температурный коэффициент начальной магнитной проницаемости
ткнс температурный коэффициент напряжения стабилизации
ткс температурный коэффициент сопротивления
тс трансформатор сетевой
тц телевизионный центр
тцп таблица цветных полос
ТУ технические условия
У усилитель
УВ усилитель воспроизведения
УВС усилитель видеосигнала
УВХ устройство выборки-хранения
УВЧ усилитель сигналов высокой частоты
УВЧ ультравысокая частота
УЗ усилитель записи
УЗЧ усилитель сигналов звуковой частоты
УКВ ультракороткие волны
УЛПТ унифицированный ламповополупроводниковый телевизор
УЛЛЦТ унифицированный лампово полупроводниковый цветной телевизор
УЛТ унифицированный ламповый телевизор
УМЗЧ усилитель мощности сигналов звуковой частоты
УНТ унифицированный телевизор
УНЧ усилитель сигналов низкой частоты
УНУ управляемый напряжением усилитель.
УПТ усилитель постоянного тока; унифицированный полупроводниковый телевизор
УПЧ усилитель сигналов промежуточной частоты
УПЧЗ усилитель сигналов промежуточной частоты звук?
УПЧИ усилитель сигналов промежуточной частоты изображения
УРЧ усилитель сигналов радиочастоты
УС устройство сопряжения; устройство сравнения
УСВЧ усилитель сигналов сверхвысокой частоты
УСС усилитель строчных синхроимпульсов
УСУ универсальное сенсорное устройство
УУ устройство (узел) управления
УЭ ускоряющий (управляющий) электрод
УЭИТ универсальная электронная испытательная таблица
ФАПЧ фазовая автоматическая подстройка частоты
ФВЧ фильтр верхних частот
ФД фазовый детектор; фотодиод
ФИМ фазо-импульсная модуляция
ФМ фазовая модуляция
ФНЧ фильтр низких частот
ФПЧ фильтр промежуточной частоты
ФПЧЗ фильтр промежуточной частоты звука
ФПЧИ фильтр промежуточной частоты изображения
ФСИ фильтр сосредоточенной избирательности
ФСС фильтр сосредоточенной селекции
ФТ фототранзистор
ФЧХ фазо-частотная характеристика
ЦАП цифро-аналоговый преобразователь
ЦВМ цифровая вычислительная машина
ЦМУ цветомузыкальная установка
ЦТ центральное телевидение
ЧД частотный детектор
ЧИМ частотно-импульсная модуляция
чм частотная модуляция
шим широтно-импульсная модуляция
шс шумовой сигнал
эв электрон-вольт (е В)
ЭВМ. электронная вычислительная машина
эдс электродвижущая сила
эк электронный коммутатор
ЭЛТ электронно-лучевая трубка
ЭМИ электронный музыкальный инструмент
эмос электромеханическая обратная связь
ЭМФ электромеханический фильтр
ЭПУ электропроигрывающее устройство
ЭЦВМ электронная цифровая вычислительная машина

www.radioelementy.ru

Радиодетали - это... Что такое Радиодетали?

Радиодетали Обозначение радиодеталей на схемах

Радиодетали - просторечное название электронных компонентов, применяемых для изготовления устройств (приборов) цифровой и аналоговой электроники.

На появление названия повлиял тот исторический факт, что в начале XX века первым повсеместно распространнёным, и при этом технически сложным для неспециалиста электронным устройством, стало радио. Изначально термин радиодетали означал электронные компоненты, применяемые для производства радиоприёмников; затем обиходное, с некоторой долей иронии, название распространилось и на остальные радиоэлектронные компоненты и устройства, уже не имеющие прямой связи с радио.

Классификация

Электронные компоненты делятся, по способу действия в электрической цепи, на активные и пассивные.

Пассивные

Базовыми элементами, имеющиеся практически во всех электронных схемах радиоэлектронной аппаратуры (РЭА), являются:

С использованием электромагнитной индукции

На базе электромагнитов:

Кроме того, для создания цепи используются всевозможные соединители и разъединители цепи - ключи; для защиты от перенапряжения и короткого замыкания - предохранители; для восприятия человеком сигнала - лампочки и динамики (динамическая головка громкоговорителя), для формирования сигнала - микрофон и видеокамера; для приёма аналогового сигнала, передающегося по эфиру, приёмнику нужна Антенна, а для работы вне сети электрического тока - аккумуляторы.

Активные

Вакуумные приборы

С развитием электроники появились вакуумные электронные приборы:

Полупроводниковые приборы

В дальнейшем получили распространение полупроводниковые приборы:

и более сложные комплексы на их основе - интегральные микросхемы

По способу монтажа

Технологически, по способу монтажа, радиодетали можно разделить на:

См. также

Ссылки

dic.academic.ru

обозначения на схеме. Как читать обозначения радиодеталей на схеме?

Технологии 4 июня 2016

В статье вы узнаете о том, какие существуют радиодетали. Обозначения на схеме согласно ГОСТу будут рассмотрены. Начать нужно с самых распространенных - резисторов и конденсаторов.

Чтобы собрать какую-либо конструкцию, необходимо знать, как выглядят в реальности радиодетали, а также как они обозначаются на электрических схемах. Существует очень много радиодеталей – транзисторы, конденсаторы, резисторы, диоды и пр.

Конденсаторы ­– это детали, которые встречаются в любой конструкции без исключения. Обычно самые простые конденсаторы представляют собой две пластины из металла. И в качестве диэлектрического компонента выступает воздух. Сразу вспоминаются уроки физики в школе, когда проходили тему о конденсаторах. В качестве модели выступали две огромные плоские железки круглой формы. Их приближали друг к другу, затем отдаляли. И в каждом положении проводили замеры. Стоит отметить, что вместо воздуха может использоваться слюда, а также любой материал, который не проводит электрический ток. Обозначения радиодеталей на импортных принципиальных схемах отличается от ГОСТов, принятых в нашей стране.

Обратите внимание на то, что через обычные конденсаторы не проходит постоянный ток. С другой же стороны, переменный ток через него проходит без особых трудностей. Учитывая это свойство, устанавливают конденсатор только там, где необходимо отделить переменную составляющую в постоянном токе. Следовательно, можно сделать схему замещения (по теореме Кирхгофа):

  1. При работе на переменном токе конденсатор замещается отрезком проводника с нулевым сопротивлением.
  2. При работе в цепи постоянного тока конденсатор замещается (нет, не емкостью!) сопротивлением.

Основной характеристикой конденсатора является электрическая емкость. Единица емкости – это Фарад. Она очень большая. На практике, как правило, используются конденсаторы, емкость которых измеряется в микрофарадах, нанофарадах, микрофарадах. На схемах конденсатор обозначается в виде двух параллельных черточек, от которых идут отводы.

Переменные конденсаторы

Существует и такой вид приборов, у которых емкость изменяется (в данном случае за счет того, что имеются подвижные пластины). Емкость зависит от размеров пластины (в формуле S – это ее площадь), а также от расстояния между электродами. В переменном конденсаторе с воздушным диэлектриком например, благодаря наличию подвижной части удается быстро менять площадь. Следовательно, будет меняться и емкость. А вот обозначение радиодеталей на зарубежных схемах несколько отличается. Резистор, например, на них изображается в виде ломаной кривой.

Видео по теме

Постоянные конденсаторы

Эти элементы имеют отличия в конструкции, а также в материалах, из которых они изготовлены. Можно выделить самые популярные типы диэлектриков:

  1. Воздух.
  2. Слюда.
  3. Керамика.

Но это касается исключительно неполярных элементов. Существуют еще электролитические конденсаторы (полярные). Именно у таких элементов очень большие емкости – начиная от десятых долей микрофарад и заканчивая несколькими тысячами. Кроме емкости у таких элементов существует еще один параметр – максимальное значение напряжения, при котором допускается его использование. Данные параметры прописываются на схемах и на корпусах конденсаторов.

Обозначения конденсаторов на схемах

Стоит заметить, что в случае использования подстроечных или переменных конденсаторов указывается два значения – минимальная и максимальная емкость. По факту на корпусе всегда можно найти некоторый диапазон, в котором изменится емкость, если провернуть ось прибора от одного крайнего положения в другое.

Допустим, имеется переменный конденсатор с емкостью 9-240 (измерение по умолчанию в пикофарадах). Это значит, что при минимальном перекрытии пластин емкость составит 9 пФ. А при максимальном – 240 пФ. Стоит рассмотреть более детально обозначение радиодеталей на схеме и их название, чтобы уметь правильно читать технические документации.

Соединение конденсаторов

Сразу можно выделить три типа (всего существует именно столько) соединений элементов:

  1. Последовательное – суммарная емкость всей цепочки вычислить достаточно просто. Она будет в этом случае равна произведению всех емкостей элементов, разделенному на их сумму.
  2. Параллельное – в этом случае вычислить суммарную емкость еще проще. Необходимо сложить емкости всех входящих в цепочку конденсаторов.
  3. Смешанное – в данном случае схема разбивается на несколько частей. Можно сказать, что упрощается – одна часть содержит только параллельно соединенные элементы, вторая – только последовательно.

И это только общие сведения о конденсаторах, на самом деле очень много о них можно рассказывать, приводить в пример занимательные эксперименты.

Резисторы: общие сведения

Эти элементы также можно встретить в любой конструкции – хоть в радиоприемнике, хоть в схеме управления на микроконтроллере. Это фарфоровая трубка, на которой с внешней стороны проведено напыление тонкой пленки металла (углерода – в частности, сажи). Впрочем, можно нанести даже графит – эффект будет аналогичный. Если резисторы имеют очень низкое сопротивление и высокую мощность, то используется в качестве проводящего слоя нихромовая проволока.

Основная характеристика резистора – это сопротивление. Используется в электрических схемах для установки необходимого значения тока в определенных цепях. На уроках физики проводили сравнение с бочкой, наполненной водой: если изменять диаметр трубы, то можно регулировать скорость струи. Стоит отметить, что от толщины токопроводящего слоя зависит сопротивление. Чем тоньше этот слой, тем выше сопротивление. При этом условные обозначения радиодеталей на схемах не зависят от размеров элемента.

Постоянные резисторы

Что касается таких элементов, то можно выделить наиболее распространенные типы:

  1. Металлизированные лакированные теплостойкие – сокращенно МЛТ.
  2. Влагостойкие сопротивления – ВС.
  3. Углеродистые лакированные малогабаритные – УЛМ.

У резисторов два основных параметра – мощность и сопротивление. Последний параметр измеряется в Омах. Но эта единица измерения крайне мала, поэтому на практике чаще встретите элементы, у которых сопротивление измеряется в мегаомах и килоомах. Мощность измеряется исключительно в Ваттах. Причем габариты элемента зависят от мощности. Чем она больше, тем крупнее элемент. А теперь о том, какое существует обозначение радиодеталей. На схемах импортных и отечественных устройств все элементы могут обозначаться по-разному.

На отечественных схемах резистор – это небольшой прямоугольник с соотношением сторон 1:3, его параметры прописываются либо сбоку (если расположен элемент вертикально), либо сверху (в случае горизонтального расположения). Сначала указывается латинская буква R, затем – порядковый номер резистора в схеме.

Переменный резистор (потенциометр)

Постоянные сопротивления имеют всего два вывода. А вот переменные – три. На электрических схемах и на корпусе элемента указывается сопротивление между двумя крайними контактами. А вот между средним и любым из крайних сопротивление будет меняться в зависимости от того, в каком положении находится ось резистора. При этом если подключить два омметра, то можно увидеть, как будет меняться показание одного в меньшую сторону, а второго - в большую. Нужно понять, как читать схемы радиоэлектронных устройств. Обозначения радиодеталей тоже не лишним окажется знать.

Суммарное сопротивление (между крайними выводами) останется неизменным. Переменные резисторы используются для регулирования усиления (с их помощью меняете вы громкость в радиоприемниках, телевизорах). Кроме того, переменные резисторы активно используются в автомобилях. Это датчики уровня топлива, регуляторы скорости вращения электродвигателей, яркости освещения.

Соединение резисторов

В данном случае картина полностью обратна той, которая была у конденсаторов:

  1. Последовательное соединение – сопротивление всех элементов в цепи складывается.
  2. Параллельное соединение – произведение сопротивлений делится на сумму.
  3. Смешанное – разбивается вся схема на более мелкие цепочки и вычисляется поэтапно.

На этом можно закрыть обзор резисторов и начать описывать самые интересные элементы – полупроводниковые (обозначения радиодеталей на схемах, ГОСТ для УГО, рассмотрены ниже).

Полупроводники

Это самая большая часть всех радиоэлементов, так как в число полупроводников входят не только стабилитроны, транзисторы, диоды, но и варикапы, вариконды, тиристоры, симисторы, микросхемы, и т. д. Да, микросхемы – это один кристалл, на котором может находиться великое множество радиоэлементов – и конденсаторов, и сопротивлений, и р-п-переходов.

Как вы знаете, есть проводники (металлы, например), диэлектрики (дерево, пластик, ткани). Могут быть различными обозначения радиодеталей на схеме (треугольник – это, скорее всего, диод или стабилитрон). Но стоит отметить, что треугольником без дополнительных элементов обозначается логическая земля в микропроцессорной технике.

Эти материалы либо проводят ток, либо нет, независимо от того, в каком агрегатном состоянии они находятся. Но существуют и полупроводники, свойства которых меняются в зависимости от конкретных условий. Это такие материалы, как кремний, германий. Кстати, стекло тоже можно отчасти отнести к полупроводникам – в нормальном состоянии оно не проводит ток, но вот при нагреве картина полностью обратная.

Диоды и стабилитроны

Полупроводниковый диод имеет всего два электрода: катод (отрицательный) и анод (положительный). Но какие же существуют особенности у этой радиодетали? Обозначения на схеме можете увидеть выше. Итак, вы подключаете источник питания плюсом к аноду и минусом к катоду. В этом случае электрический ток будет протекать от одного электрода к другому. Стоит отметить, что у элемента в этом случае крайне малое сопротивление. Теперь можно провести эксперимент и подключить батарею наоборот, тогда сопротивление току увеличивается в несколько раз, и он перестает идти. А если через диод направить переменный ток, то получится на выходе постоянный (правда, с небольшими пульсациями). При использовании мостовой схемы включения получается две полуволны (положительные).

Стабилитроны, как и диоды, имеют два электрода – катод и анод. В прямом включении этот элемент работает точно так же, как и рассмотренный выше диод. Но если пустить ток в обратном направлении, можно увидеть весьма интересную картину. Первоначально стабилитрон не пропускает через себя ток. Но когда напряжение достигает некоторого значения, происходит пробой, и элемент проводит ток. Это напряжение стабилизации. Очень хорошее свойство, благодаря которому получается добиться стабильного напряжения в цепях, полностью избавиться от колебаний, даже самых мелких. Обозначение радиодеталей на схемах - в виде треугольника, а у его вершины - черта, перпендикулярная высоте.

Если диоды и стабилитроны можно иногда даже не встретить в конструкциях, то транзисторы вы найдете в любой (кроме детекторного приемника). У транзисторов три электрода:

  1. База (сокращенно буквой "Б" обозначается).
  2. Коллектор (К).
  3. Эмиттер (Э).

Транзисторы могут работать в нескольких режимах, но чаще всего их используют в усилительном и ключевом (как выключатель). Можно провести сравнение с рупором – в базу крикнули, из коллектора вылетел усиленный голос. А за эмиттер держитесь рукой – это корпус. Основная характеристика транзисторов – коэффициент усиления (отношение тока коллектора и базы). Именно данный параметр наряду с множеством иных является основным для этой радиодетали. Обозначения на схеме у транзистора – вертикальная черта и две линии, подходящие к ней под углом. Можно выделить несколько наиболее распространенных видов транзисторов:

  1. Полярные.
  2. Биполярные.
  3. Полевые.

Существуют также транзисторные сборки, состоящие из нескольких усилительных элементов. Вот такие самые распространенные существуют радиодетали. Обозначения на схеме были рассмотрены в статье.