Диаграмма компонентов uml требования к функциям. Диаграммы пакетов, компонентов и размещения. Диаграммы сценариев использования

10.4. ДИАГРАММЫ UML

10.4.1. Типы визуальных диаграмм UML

UML позволяет создавать несколько типов визуальных диаграмм:

Диаграммы вариантов использования;

Диаграммы последовательности;

Кооперативные диаграммы;

Диаграммы классов;

Диаграммы состояний;

Диаграммы компонент;

Диаграммы размещения.

Диаграммы иллюстрируют различные аспекты системы. Например, кооперативная диаграмма показывает, как должны взаимодействовать объекты, чтобы реализовать некоторую функциональность системы. У каждой диаграммы есть своя цель.

10.4.2. Диаграммы вариантов использования

Диаграммы вариантов использования отображают взаимодействие между вариантами использования, представляющими функции системы, и действующими лицами, представляющими людей или системы, получающие или передающие информацию в данную систему. Пример диаграммы вариантов использования для банковского автомата (ATM) показан на рис. 10.1.

Рис. 10.1. Диаграмма вариантов использования

На диаграмме представлено взаимодействие между вариантами использования и действующими лицами. Она отражает требования к системе с точки зрения пользователя. Таким образом, варианты использования - это функции, выполняемые системой, а действующие лица - это заинтересованные лица по отношению к создаваемой системе. Диаграммы показывают, какие действующие лица инициируют варианты использования. Из них также видно, когда действующее лицо получает информацию от варианта использования. В сущности диаграмма вариантов использования может иллюстрировать требования к системе. В нашем примере клиент банка инициирует различные варианты использования: "Снять деньги со счета", "Перевести деньги", "Положить деньги на счет", "Показать баланс", "Изменить идентификационный номер", "Произвести оплату". Банковский служащий может инициировать вариант использования "Изменить идентификационный номер". От варианта использования "Произвести оплату" идет стрелка к Кредитной системе. Действующими лицами могут быть и внешние системы, в данном случае Кредитная система показана именно как действующее лицо - она является внешней для системы ATM. Стрелка, направленная от варианта использования к действующему лицу, показывает, что вариант использования предоставляет некоторую информацию действующему лицу. В данном случае вариант использования "Произвести оплату" предоставляет Кредитной системе информацию об оплате по кредитной карточке.

Из диаграмм вариантов использования можно получить довольно много информации о системе. Этот тип диаграмм описывает общую функциональность системы. Пользователи, менеджеры проектов, аналитики, разработчики, специалисты по контролю качества и все, кого интересует система в целом, могут, изучая диаграммы вариантов использования, понять, что система должна делать.

10.4.3. Диаграммы последовательности

Диаграммы последовательности отражают поток событий, происходящих в рамках варианта использования. Например, вариант использования "Снять деньги" предусматривает несколько возможных последовательностей: снятие денег, попытка снять деньги при отсутствии их достаточного количества на счету, попытка снять деньги по неправильному идентификационному номеру и некоторые другие. Нормальный сценарий снятия $20 со счета (при отсутствии таких проблем, как неправильный идентификационный номер или недостаток денег на счету) показан на рис. 10.2.

Рис 10.2. Диаграмма последовательности снятия клиентом Джо $20 со счета

В верхней части диаграммы показаны все действующие лица и объекты, требуемые системе для выполнения варианта использования "Снять деньги". Стрелки соответствуют сообщениям, передаваемым между действующим лицом и объектом или между объектами для выполнения требуемых функций. Следует отметить также, что на диаграмме последовательности показаны именно объекты, а не классы. Классы представляют собой типы объектов. Объекты конкретны; вместо класса Клиент на диаграмме последовательности представлен конкретный клиент Джо.

Вариант использования начинается, когда клиент вставляет свою карточку в устройство для чтения - этот объект показан в прямоугольнике в верхней части диаграммы. Он считывает номер карточки, открывает объект "счет Джо" и инициализирует экран ATM. Экран запрашивает у Джо его регистрационный номер. Клиент вводит число 1234. Экран проверяет номер у объекта "счет Джо" и обнаруживает, что он правильный. Затем экран предоставляет Джо меню для выбора, и тот выбирает пункт "Снять деньги". Экран запрашивает, сколько он хочет снять, и Джо указывает $20. Экран снимает деньги со счета. При этом он инициирует серию процессов, выполняемых объектом "счет Джо". В то же время осуществляется проверка, что на этом счету лежат, по крайней мере, $20 и из счета вычитается требуемая сумма. Затем кассовый аппарат получает инструкцию "выдать чек и $20 наличными". Наконец, все тот же объект "счет Джо" дает устройству для чтения карточек инструкцию вернуть карточку.

Итак, данная диаграмма последовательности иллюстрирует последовательность действий, реализующих вариант использования "Снять деньги со счета" на конкретном примере снятия клиентом Джо $20. Глядя на эту диаграмму, пользователи знакомятся со спецификой своей работы. Аналитики видят последовательность (поток) действий, разработчики - объекты, которые надо создать, и их операции. Специалисты по контролю качества поймут детали процесса и смогут разработать тесты для их проверки. Таким образом, диаграммы последовательности полезны всем участникам проекта.

10.4.4. Кооперативные диаграммы

Кооперативные диаграммы отражают ту же самую информацию, что и диаграммы последовательности. Однако дела, ют они это по-другому и с другими целями. Показанная на рис. 10.2 диаграмма последовательности представлена на рис. 10.3 в виде кооперативной диаграммы.

Как и раньше, объекты изображены в виде прямоугольников, а действующие лица в виде фигур. Если диаграмма последовательности показывает взаимодействие между действующими лицами и объектами во времени, то на кооперативной диаграмме связь со временем отсутствует. Так, можно видеть, что устройство для чтения карточки выдает "счету Джо" инструкцию открыться, а "счет Джо" заставляет это устройство вернуть карточку владельцу. Непосредственно взаимодействующие объекты соединены линиями. Если, например, устройство для чтения карточки общается непосредственно с экраном ATM, между ними следует провести линию. Отсутствие линии означает, что непосредственное сообщение между объектами отсутствует.

Рис. 10.3. Кооперативная диаграмма, описывающая процесс снятия денег со счета

Итак, на кооперативной диаграмме отображается та же информация, что и на диаграмме последовательности, но нужна она для других целей. Специалисты по контролю качества и архитекторы системы смогут понять распределение процессов между объектами. Допустим, что какая-то кооперативная диаграмма напоминает звезду, где несколько объектов связаны с одним центральным объектом. Архитектор системы может сделать вывод, что система слишком сильно зависит от центрального объекта, и необходимо перепроектировать ее для более равномерного распределения процессов. На диаграмме последовательности такой тип взаимодействия было бы трудно увидеть.

10.4.5. Диаграммы классов

Диаграммы классов отражают взаимодействие между классами системы. Например, "счет Джо" - это объект. Типом такого объекта можно считать счет вообще, т. е. "Счет" - это класс. Классы содержат данные и поведение (действия), влияющее на эти данные. Так, класс Счет содержит идентификационный номер клиента и проверяющие его действия. На диаграмме классов класс создается для каждого типа объектов из диаграмм последовательности или Кооперативных диаграмм. Диаграмма классов для варианта использования "Снять деньги" показана на рис. 10.4.

На диаграмме показаны связи между классами, реализующими вариант использования "Снять деньги". В этом процессе задействованы четыре класса: Card Reader (устройство для чтения карточек), Account (счет), ATM (экран ATM) и Cash Dispenser (кассовый аппарат). Каждый класс на диаграмме классов изображается в виде прямоугольника, разделенного на три части. В первой части указывается имя класса, во второй - его атрибуты. Атрибут - это некоторая информация, характеризующая класс. Например, класс Account (счет) имеет три атрибута: Account Number (номер счета), PIN (идентификационный номер) и Balance (баланс). В последней части содержатся операции класса, отражающие его поведение (действия, выполняемые классом). Связывающие классы линии показывают взаимодействие между классами.

Рис. 10.4. Диаграмма классов

Разработчики используют диаграммы классов для реального создания классов. Такие инструменты, как Rose, генерируют основу кода классов, которую программисты заполняют деталями на выбранном ими языке. С помощью этих диаграмм аналитики могут показать детали системы, а архитекторы - понять ее проект. Если, например, какой-либо класс несет слишком большую функциональную нагрузку, это будет видно на диаграмме классов, и архитектор сможет перераспределить ее между другими классами. С помощью диаграммы можно также выявить случаи, когда между сообщающимися классами не определено никаких связей. Диаграммы классов следует создавать, чтобы показать взаимодействующие классы в каждом варианте использования. Можно строить также более общие диаграммы, охватывающие все системы или подсистемы.

10.4.6. Диаграммы состояний

Диаграммы состояний предназначены для моделирования различных состояний, в которых может находиться объект. В то время как диаграмма классов показывает статическую картину классов и их связей, диаграммы состояний применяются при описании динамики поведения системы.

Диаграммы состояний отображают поведение объекта. Так, банковский счет может иметь несколько различных состояний. Он может быть открыт, закрыт или может быть превышен кредит по нему. Поведение счета меняется в зависимости от состояния, в котором он находится. На диаграмме состояний показывают именно эту информацию. На рис. 10.5 приведен пример диаграммы состояний для банковского счета.

Рис. 10.5. Диаграмма состояний для класса Account

На данной диаграмме показаны возможные состояния счета, а также процесс перехода счета из одного состояния в другое. Например, если клиент требует закрыть открытый счет, последний переходит в состояние "Закрыт". Требование клиента называется событием, именно события вызывают переход из одного состояния в другое.

Когда клиент снимает деньги с открытого счета, счет может перейти в состояние "Превышение кредита". Это происходит, только если баланс по счету меньше нуля, что отражено условием [отрицательный баланс] на нашей диаграмме. Заключенное в квадратные скобки условие определяет, когда может или не может произойти переход из одного состояния в другое.

На диаграмме имеются два специальных состояния - начальное и конечное. Начальное состояние выделяется черной точкой: оно соответствует состоянию объекта в момент его создания. Конечное состояние обозначается черной точкой в белом кружке: оно соответствует состоянию объекта непосредственно перед его уничтожением. На диаграмме состояний может быть одно и только одно начальное состояние. В то же время может быть столько конечных состояний, сколько вам нужно или их может не быть вообще.

Когда объект находится в каком-то конкретном состоянии, могут выполняться те или иные процессы. В нашем примере при превышении кредита клиенту посылается соответствующее сообщение. Процессы, происходящие, когда объект находится в определенном состоянии, называются действиями.

Диаграммы состояний не нужно создавать для каждого класса, они применяются только в очень сложных случаях. Если объект класса может существовать в нескольких состояниях и в каждом из них ведет себя по-разному, для него, вероятно, потребуется такая диаграмма. Однако во многих проектах они вообще не используются. Если же диаграммы состояний все-таки были построены, разработчики могут применять их при создании классов.

Диаграммы состояний необходимы в основном для документирования.

10.4.7. Диаграммы компонент

Диаграммы компонент показывают, как выглядит модель на физическом уровне. На ней изображаются компоненты программного обеспечения вашей системы и связи между ними. При этом выделяют два типа компонент: исполняемые компоненты и библиотеки кода.

На рис. 10.6 изображена одна из диаграмм компонент для системы ATM. На этой диаграмме показаны компоненты клиента системы ATM. В данном случае команда разработчиков решила строить систему с помощью языка C++. У каждого класса имеется свой собственный заголовочный файл и файл с расширением. СРР, так что каждый класс преобразуется в свои собственные компоненты на диаграмме. Выделенная темная компонента называется спецификацией пакета и соответствует файлу тела класса ATM на языке C++ (файл с расширением. СРР). Невыделенная компонента также называется спецификацией пакета, но соответствует заголовочному файлу класса языка C++ (файл с расширением. Н). Компонента АТМ. ехе является спецификацией задачи и представляет поток обработки информации. В данном случае поток обработки - это исполняемая программа.

Компоненты соединены штриховой линией, отображающей зависимости между ними. У системы может быть несколько диаграмм компонент в зависимости от числа подсистем или исполняемых файлов. Каждая подсистема является пакетом компонент.

Диаграммы компонент применяются теми участниками проекта, кто отвечает за компиляцию системы. Диаграмма компонент дает представление о том, в каком порядке надо компилировать компоненты, а также какие исполняемые компоненты будут созданы системой. Диаграмма показывает соответствие классов реализованным компонентам. Итак, она нужна там, где начинается генерация кода.

Рис. 10.6. Диаграмма компонент

10.4.8. Диаграммы размещения

Диаграммы размещения показывают физическое расположение различных компонент системы в сети. В нашем примере система ATM состоит из большого количества подсистем, выполняемых на отдельных физических устройствах или узлах. Диаграмма размещения для системы ATM представлена на рис. 10.7.

Из данной диаграммы можно узнать о физическом размещении системы. Клиентские программы ATM будут работать в нескольких местах на различных сайтах. Через закрытые сети будет осуществляться сообщение клиентов с региональным сервером ATM. На нем будет работать программное обеспечение сервера ATM. В свою очередь, посредством локальной сети региональный сервер будет взаимодействовать с сервером банковской базы данных, работающим под управлением Oracle. Наконец, с региональным сервером ATM соединен принтер.

Итак, данная диаграмма показывает физическое расположение системы. Например, наша система ATM соответствует трехуровневой архитектуре, когда на первом уровне размещается база данных, на втором - региональный сервер, а на третьем - клиент.

10.7. Диаграмма размещения

Диаграмма размещения используется менеджером проекта, пользователями, архитектором системы и эксплуатационным персоналом для выяснения физического размещения системы и расположения ее отдельных подсистем. Менеджер проекта объяснит пользователям, как будет выглядеть готовый продукт. Эксплуатационный персонал сможет планировать работу по установке системы.

Из книги Microsoft Office автора Леонтьев Виталий Петрович

Диаграммы Далеко не всегда числа в таблице позволяют составить полное впечатление, даже если они рассортированы наиболее удобным для вас способом. Используя имеющиеся в Microsoft Excel шаблоны диаграмм, вы сможете получить наглядную картину данных вашей таблицы, причем, не

Из книги Компьютер на 100. Начинаем с Windows Vista автора Зозуля Юрий

Диаграммы Диаграммы служат для представления табличных данных в графическом виде, что позволяет значительно улучшить наглядность информации, показать соотношение различных параметров или динамику их изменения. Для вставки диаграмм в Word используются средства

Из книги Эффективное делопроизводство автора Пташинский Владимир Сергеевич

Диаграммы Самая наглядная возможность Excel – это представление результатов вычислений или накопленных данных в виде графиков (диаграмм): иногда самые впечатляющие цифры не способны убедить так, как это возможно сделать с помощью даже простой графики. Excel располагает

Из книги Excel. Мультимедийный курс автора Мединов Олег

Глава 8 Диаграммы Часто программу Excel используют для создания документов, представляющих собой различные статистические и аналитические отчеты. Это могут быть отчеты о продажах, таблицы замеров температуры воздуха, данные социологических опросов и т. д. Цифры не всегда

Из книги Word 2007.Популярный самоучитель автора Краинский И

Построение диаграммы Для первого примера вам понадобится создать таблицу, изображенную на рис. 8.1. Рис. 8.1. Таблица замера температурыМы построим простой график изменения температуры на основе данных этой таблицы.1. Выделите заполненный диапазон в таблице.2. Перейдите на

Из книги Самоучитель работы на компьютере автора Колисниченко Денис Николаевич

6.6. Диаграммы Кроме графических файлов, в документы Word можно вставлять диаграммы. При помощи диаграмм можно наглядно представить числовые данные, например проследить, как изменяются данные, увидеть развитие того или иного проекта в динамике. Диаграммы превращают похожие

Из книги Объектно-ориентированный анализ и проектирование с примерами приложений на С++ автора Буч Гради

14.9. Диаграммы Наверное, пора бы уже превратить сухие числа в графику, сделав нашу таблицу красивее и информативнее? Для этого используются диаграммы. Что ни говори, а диаграмма воспринимается лучше, чем таблица.Для построения диаграммы нужно выбрать значения, по которым

Из книги Технологии программирования автора Камаев В А

5.2. Диаграммы классов Существенное: классы и отношения между ними Диаграмма классов показывает классы и их отношения, тем самым представляя логический аспект проекта. Отдельная диаграмма классов представляет определенный ракурс структуры классов. На стадии анализа мы

Из книги Моделирование бизнес-процессов с BPwin 4.0 автора Маклаков Сергей Владимирович

5.4. Диаграммы объектов Существенное: объекты и их отношения Диаграмма объектов показывает существующие объекты и их связи в логическом проекте системы. Иначе говоря, диаграмма объектов представляет собой мгновенный снимок потока событий в некоторой конфигурации

Из книги OrCAD PSpice. Анализ электрических цепей автора Кеоун Дж.

5.7. Диаграммы процессов. Существенное: процессоры, устройства и соединения Диаграммы процессов используются, чтобы показать распределение процессов по процессорам в физическом проекте системы. Отдельная диаграмма процессов показывает один ракурс структуры процессов

Из книги VBA для чайников автора Каммингс Стив

10.4. ДИАГРАММЫ UML 10.4.1. Типы визуальных диаграмм UMLUML позволяет создавать несколько типов визуальных диаграмм: диаграммы вариантов использования; диаграммы последовательности; кооперативные диаграммы; диаграммы классов; диаграммы состояний; диаграммы

Из книги Самоучитель работы на Macintosh автора Скрылина Софья

1.2.6. Каркас диаграммы На рис. 1.2.26 показан типичный пример диаграммы декомпозиции с граничными рамками, которые называются каркасом диаграммы. Рис. 1.2.26. Пример диаграммы декомпозиции с каркасомКаркас содержит заголовок (верхняя часть рамки) и подвал (нижняя часть).

Из книги автора

Временные диаграммы Чтобы получить временные диаграммы входного и выходного напряжений, необходимо слегка изменить входной файл. Как и в предыдущем примере, будет использовано синусоидальное входное напряжение:Vi 1 0 sin (0 0. 5V 5kHz)Наряду с анализом переходных процессов

Из книги автора

Диаграммы и графики Разглядеть смысл, скрывающийся за бесконечными рядами чисел, может только специалист, а вот понять (или по крайней мере заявить, что понимает) гистограмму или круговую диаграмму может каждый. В VBA нет встроенных средств для создания диаграмм, но такие

Из книги автора

5.1.14. Диаграммы Диаграмм - графическое представление числовых данных таблицы. Pages предлагает несколько видов диаграмм: Column (Столбцовая), Stacked Column (Многоярусные столбцы), Ваг (Гистограмма), Stacked Ваг (Многоярусная гистограмма), Line (Линейная), Area (Площадь), Stacked Area (Многоярусная

Из книги автора

5.2.8. Диаграммы Диаграмма - графическое представление данных из выбранного диапазона.Для построения диаграммы придерживайтесь следующего алгоритма1. Создать таблицу расчетных значений.2. Выделить нужный диапазон (он может состоять из не смежных прямоугольных

Аннотация: Назначение диаграммы компонентов, ее основные элементы. Особенности физического представления программных систем. Компоненты программных систем, их разновидности. Интерфейсы, их реализация компонентами. Использование диаграммы компонентов для проектирования зависимостей между компонентами. Рекомендации по построению диаграммы компонентов.

Диаграмма компонентов и особенности ее построения

Все рассмотренные ранее диаграммы отражали концептуальные и логические аспекты построения модели системы. Особенность логического представления заключается в том, что оно оперирует понятиями, которые не имеют материального воплощения. Другими словами, различные элементы логического представления, такие как классы, ассоциации, состояния, сообщения, не существуют материально или физически. Они лишь отражают понимание статической структуры той или иной системы или динамические аспекты ее поведения.

Для создания конкретной физической системы необходимо реализовать все элементы логического представления в конкретные материальные сущности. Для описания таких реальных сущностей предназначен другой аспект модельного представления, а именно – физическое представление модели. В контексте языка UML это означает совокупность связанных физических сущностей, включая программное и аппаратное обеспечение , а также персонал, которые организованы для выполнения специальных задач.

Физическая система ( physical system ) - реально существующий прототип модели системы.

С тем чтобы пояснить отличие логического и физического представлений, необходимо в общих чертах рассмотреть процесс разработки программной системы. Ее исходным логическим представлением могут служить структурные схемы алгоритмов и процедур, описания интерфейсов и концептуальные схемы баз данных. Однако для реализации этой системы необходимо разработать исходный текст программы на языке программирования. При этом уже в тексте программы предполагается организация программного кода, определяемая синтаксисом языка программирования и предполагающая разбиение исходного кода на отдельные модули.

Однако исходные тексты программы еще не являются окончательной реализацией проекта, хотя и служат фрагментом его физического представления. Программная система может считаться реализованной в том случае, когда она будет способна выполнять функции своего целевого предназначения. А это возможно, только если программный код системы будет реализован в форме исполняемых модулей, библиотек классов и процедур, стандартных графических интерфейсов, файлов баз данных. Именно эти компоненты являются базовыми элементами физического представления системы в нотации языка UML .

Полный проект программной системы представляет собой совокупность моделей логического и физического представлений, которые должны быть согласованы между собой. В языке UML для физического представления моделей систем используются так называемые диаграммы реализации, которые включают в себя две отдельные канонические диаграммы : диаграмму компонентов и диаграмму развертывания .

Диаграмма компонентов , в отличие от ранее рассмотренных диаграмм, описывает особенности физического представления системы. Диаграмма компонентов позволяет определить архитектуру разрабатываемой системы, установив зависимости между программными компонентами , в роли которых может выступать исходный, бинарный и исполняемый код . Во многих средах разработки модуль или компонент соответствует файлу. Пунктирные стрелки, соединяющие модули , показывают отношения взаимозависимости, аналогичные тем, которые имеют место при компиляции исходных текстов программ. Основными графическими элементами диаграммы компонентов являются компоненты , интерфейсы и зависимости между ними.

В разработке диаграмм компонентов участвуют как системные аналитики и архитекторы, так и программисты. Диаграмма компонентов обеспечивает согласованный переход от логического представления к конкретной реализации проекта в форме программного кода. Одни компоненты могут существовать только на этапе компиляции программного кода, другие – на этапе его исполнения. Диаграмма компонентов отражает общие зависимости между компонентами , рассматривая последние в качестве отношений между ними.

Компоненты

Для представления физических сущностей в языке UML применяется специальный термин – компонент .

Компонент (component) - физически существующая часть системы, которая обеспечивает реализацию классов и отношений, а также функционального поведения моделируемой программной системы.

Компонент предназначен для представления физической организации ассоциированных с ним элементов модели. Дополнительно компонент может иметь текстовый стереотип и помеченные значения , а некоторые компоненты – собственное графическое представление . Компонентом может быть исполняемый код отдельного модуля , командные файлы или файлы, содержащие интерпретируемые скрипты.

Компонент служит для общего обозначения элементов физического представления модели и может реализовывать некоторый набор интерфейсов . Для графического представления компонента используется специальный символ – прямоугольник со вставленными слева двумя более мелкими прямоугольниками (рис. 12.1) . Внутри объемлющего прямоугольника записывается имя компонента и, возможно, дополнительная информация . Этот символ является базовым обозначением компонента в языке UML .


Рис. 12.1.

Графическое изображение компонента ведет свое происхождение от обозначения модуля программы, применявшегося некоторое время для отображения особенностей инкапсуляции данных и процедур.

Модуль (module) - часть программной системы, требующая памяти для своего хранения и процессора для исполнения.

В этом случае верхний маленький прямоугольник концептуально ассоциировался с данными, которые реализует этот компонент (иногда он изображается в форме овала). Нижний маленький прямоугольник ассоциировался с операциями или методами, реализуемыми компонентом . В простых случаях имена данных и методов записывались явно в маленьких прямоугольниках, однако в языке UML они не указываются.

Имя компонента подчиняется общим правилам именования элементов модели в языке UML и может состоять из любого числа букв, цифр и знаков препинания. Отдельный компонент может быть представлен на уровне типа или экземпляра. И хотя его графическое изображение в обоих случаях одинаково, правила записи имени компонента несколько отличаются.

Если компонент представляется на уровне типа, то записывается только имя типа с заглавной буквы в форме: <Имя типа>. Если же компонент представляется на уровне экземпляра, то его имя записывается в форме: <имя компонента ‘:" Имя типа>. При этом вся строка имени подчеркивается. Так, в первом случае (рис. 12.1, а) для компонента уровня типов указывается имя типа, а во втором (рис. 12.1, б) для компонента уровня экземпляра – собственное имя компонента и имя типа.

Правила именования объектов в языке UML требуют подчеркивания имени отдельных экземпляров, но применительно к компонентам подчеркивание их имени часто опускают. В этом случае запись имени компонента со строчной буквы характеризует компонент уровня примеров.

В качестве собственных имен компонентов принято использовать имена исполняемых файлов, динамических библиотек, Web-страниц, текстовых файлов или файлов справки, файлов баз данных или файлов с исходными текстами программ, файлов скриптов и другие.

В отдельных случаях к простому имени компонента может быть добавлена информация об имени объемлющего пакета и о конкретной версии реализации данного компонента . Необходимо заметить, что в этом случае номер версии записывается как помеченное значение в фигурных скобках. В других случаях символ компонента может быть разделен на секции, чтобы явно указать имена реализованных в нем классов или интерфейсов . Такое обозначение компонента называется расширенным .

Поскольку компонент как элемент модели может иметь различную физическую реализацию, иногда его изображают в форме специального графического символа, иллюстрирующего конкретные особенности реализации. Строго говоря, эти дополнительные обозначения не специфицированы в нотации языка UML . Однако, удовлетворяя общим механизмам расширения языка UML , они упрощают понимание диаграммы компонентов , существенно повышая наглядность графического представления.

Для более наглядного изображения компонентов были предложены и стали общепринятыми следующие графические стереотипы:

  • Во-первых, стереотипы для компонентов развертывания, которые обеспечивают непосредственное выполнение системой своих функций. Такими компонентами могут быть динамически подключаемые библиотеки компонентов . Более того, разработчики могут для этой цели использовать самостоятельные обозначения, поскольку в языке UML нет строгой нотации для графического представления артефактов.

    Другой способ спецификации различных видов компонентов - указание текстового стереотипа компонента перед его именем. В языке UML для компонентов определены следующие стереотипы:

    • <> (файл) – определяет наиболее общую разновидность компонента , который представляется в виде произвольного физического файла.
    • <> (исполнимый) – определяет разновидность компонента-файла, который является исполнимым файлом и может выполняться на компьютерной платформе.
    • <> (документ) – определяет разновидность компонента-файла, который представляется в форме документа произвольного содержания, не являющегося исполнимым файлом или файлом с исходным текстом программы.
    • <> (библиотека) – определяет разновидность компонента-файла, который представляется в форме динамической или статической библиотеки.
    • <> (источник) – определяет разновидность компонента-файла, представляющего собой файл с исходным текстом программы, который после компиляции может быть преобразован в исполнимый файл.
    • <> (таблица) – определяет разновидность компонента , который представляется в форме таблицы базы данных.

      Отдельными разработчиками предлагались собственные графические стереотипы для изображения тех или иных типов компонентов , однако, за небольшим исключением они не нашли широкого применения. В свою очередь ряд инструментальных CASE-средств также содержат дополнительный набор графических стереотипов для обозначения компонентов .

      UML-диаграмма - это специализированный язык графического описания, предназначенный для объектного моделирования в сфере разработки различного программного обеспечения. Данный язык имеет широкий профиль и представляет собой открытый стандарт, в котором используются различные графические обозначения, чтобы создать абстрактную модель системы. UML создавался для того, чтобы обеспечить определение, визуализацию, документирование, а также проектирование всевозможных программных систем. Стоит отметить, что сама по себе UML-диаграмма не представляет собой язык программирования, но при этом предусматривается возможность генерации на ее основе отдельного кода.

      Зачем она нужна?

      Применение UML не заканчивается на моделировании всевозможного ПО. Также данный язык активно сегодня используется для моделирования различных бизнес-процессов, ведения системного проектирования, а также отображения организационных структур.

      С помощью UML разработчики программного обеспечения могут обеспечить полное соглашение в используемых графических обозначениях, чтобы представить общие понятия, такие как: компонент, обобщение, класс, поведение и агрегация. За счет этого достигается большая степень концентрации на архитектуре и проектировании.

      Также стоит отметить, что есть несколько видов таких диаграмм.

      Диаграмма классов

      Диаграмма классов UML представляет собой статическую структурную диаграмму, предназначенную для описания структуры системы, а также демонстрации атрибутов, методов и зависимостей между несколькими различными классами.

      Стоит отметить тот факт, что есть несколько точек зрения на построение таких диаграмм в зависимости от того, каким образом они будут использоваться:

      • Концептуальная. В данном случае диаграмма классов UML осуществляет описание модели определенной предметной области, и в ней предусматриваются только классы прикладных объектов.
      • Специфическая. Диаграмма используется в процессе проектирования различных информационных систем.
      • Реализационная. Диаграмма классов включает в себя всевозможные классы, которые непосредственно используются в программном коде.

      Диаграмма компонентов

      Диаграмма компонентов UML представляет собой полностью статическую структурную диаграмму. Предназначается она для того, чтобы продемонстрировать разбиение определенной программной системы на разнообразные структурные компоненты, а также связи между ними. Диаграмма компонентов UML в качестве таковых может использовать всевозможные модели, библиотеки, файлы, пакеты, исполняемые файлы и еще множество других элементов.

      Диаграмма композитной/составной структуры

      UML диаграмма композитной/составной структуры также является статической структурной диаграммой, но используется она для того, чтобы показать внутреннюю структуру классов. По возможности данная диаграмма может продемонстрировать также взаимодействие элементов, находящихся во внутренней структуре класса.

      Подвидом их является UML-диаграмма кооперации, которая используется для демонстрации ролей, а также взаимодействия различных классов в границах кооперации. Они являются достаточно удобными в том случае, если нужно моделировать шаблоны проектирования.

      Стоит отметить, что одновременно могут использоваться виды диаграмм UML классов и композитной структуры.

      Диаграмма развертывания

      Данная диаграмма используется для того, чтобы моделировать работающие узлы, а также всевозможные артефакты, которые на них были развернуты. В UML 2 на различных узлах осуществляется разворачивание артефактов, в то время как в первой версии разворачивались исключительно компоненты. Таким образом, диаграмма развертывания UML используется преимущественно ко второй версии.

      Между артефактом и тем компонентом, который он реализует, формируется зависимость манифестации.

      Диаграмма объектов

      Данный вид позволяет увидеть полноценный или же частичный снимок создаваемой системы в определенный момент времени. На ней полностью отображаются все экземпляры классов конкретной системы с указанием текущих значений их параметров, а также связей между ними.

      Диаграмма пакетов

      Эта диаграмма носит структурный характер, и основным ее содержанием являются всевозможные пакеты, а также отношения между ними. В данном случае нет никакого жесткого разделения между несколькими структурными диаграммами, вследствие чего их использование чаще всего встречается исключительно для удобства, и никакого семантического значения в себе не несет. Стоит отметить, что различные элементы могут предоставлять другие UML диаграммы (примеры: пакеты и сами диаграммы пакетов).

      Их использование осуществляется для того, чтобы обеспечить организацию нескольких элементов в группы по определенному признаку, чтобы упростить структуру, а также организовать работу с моделью данной системы.

      Диаграмма деятельности

      Диаграмма деятельности UML отображает разложение определенной деятельности на несколько составных частей. В данном случае понятием «деятельность» называется спецификация определенного исполняемого поведения в виде параллельного, а также координированного последовательного выполнения различных подчиненных элементов - вложенных типов деятельности и различных действий, объединенных потоками, идущими от выходов определенного узла к входам другого.

      Диаграмма деятельности UML достаточно часто используются для того, чтобы моделировать различные бизнес-процессы, параллельные и последовательные вычисления. Помимо всего прочего ими моделируются всевозможные технологические процедуры.

      Диаграмма автомата

      Этот вид называется и несколько иначе - диаграмма состояний UML. Имеет представленный конечный автомат с простыми и композитными состояниями, а также переходами.

      Конечный автомат представляет собой спецификацию последовательности различных состояний, через которые проходит определенный объект, или же взаимодействие в ответ на некоторые события своей жизни, а также ответные действия объекта на такие события. Конечный автомат, который использует диаграмма состояний UML, закрепляется за исходным элементом и используется для того, чтобы определить поведение его экземпляров.

      В качестве аналогов таких диаграмм могут использоваться так называемые дракон-схемы.

      Диаграммы сценариев использования

      Диаграмма вариантов использования UML отображает на себе все отношения, которые возникают между актерами, а также различными вариантами использования. Главная ее задача - осуществлять собой полноценное средство, при помощи которого заказчик, конечный пользователь или же какой-нибудь разработчик сможет совместно обсуждать поведение и функциональность определенной системы.

      Если диаграмма вариантов использования UML используется в процессе моделирования системы, то аналитик собирается:

      • Четко отделить моделируемую систему от ее окружения.
      • Выявить действующих лиц, пути их взаимодействия с данной системой, а также ожидаемый ее функционал.
      • Установить в глоссарии в качестве предметной области различные понятия, которые относятся к подробному описанию функционала данной системы.

      Если разрабатывается в UML диаграмма использования, процедура начинается с текстового описания, которое получается при работе с заказчиком. При этом стоит отметить тот факт, что различные нефункциональные требования в процессе составления модели прецедентов полностью опускаются, и для них уже будет формироваться отдельный документ.

      Коммуникации

      Диаграмма коммуникации точно так же, как и диаграмма последовательности UML, является транзитивной, то есть выражает в себе взаимодействие, но при этом демонстрирует его разными способами, и при необходимости с нужной степенью точности можно преобразовать одну в другую.

      Диаграмма коммуникации отображает в себе взаимодействия, которые происходят между различными элементами композитной структуры, а также ролями кооперации. Главным отличием ее от диаграммы последовательности является то, что на ней достаточно явно указываются отношения между несколькими элементами, а время не используется в качестве отдельного измерения.

      Данный тип отличается абсолютно свободным форматом упорядочивания нескольких объектов и связей точно так же, как это осуществляется в диаграмме объектов. Если есть необходимость в том, чтобы поддерживать порядок сообщений при этом свободном формате, осуществляется их хронологическая нумерация. Чтение данной диаграммы начинается с изначального сообщения 1.0, и впоследствии продолжается по тому направлению, по которому осуществляется передача сообщений от одного объекта к другому.

      В большинстве своем такие диаграммы демонстрируют точно такую же информацию, которую предоставляет нам диаграмма последовательности, однако из-за того, что здесь используется другой способ представления информации, определенные вещи на одной диаграмме становится гораздо проще определить, чем на другой. Также стоит отметить, что диаграмма коммуникаций более наглядно показывает, с какими элементами вступает во взаимодействие каждый отдельный элемент, в то время как диаграмма последовательности более ясно показывает, в каком порядке осуществляются взаимодействия.

      Диаграмма последовательности

      Диаграмма последовательности UML демонстрирует взаимодействия между несколькими объектами, которые упорядочиваются в соответствии с временем их проявления. На такой диаграмме отображается упорядоченное во времени взаимодействие между несколькими объектами. В частности, на ней отображаются все объекты, которые принимают участие во взаимодействии, а также полная последовательность обмениваемых ими сообщений.

      Главными элементами в данном случае выступают обозначения различных объектов, а также вертикальные линии, отображающие течение времени и прямоугольники, предоставляющие деятельность определенного объекта или же выполнение им какой-либо функции.

      Диаграмма сотрудничества

      Данный тип диаграмм позволяет продемонстрировать взаимодействия между несколькими объектами, абстрагируясь от последовательности трансляции сообщений. Данный тип диаграмм в компактном виде отображает в себе абсолютно все передаваемые и принимаемые сообщения определенного объекта, а также форматы этих сообщений.

      По причине того, что диаграммы последовательности и коммуникации представляют собой просто-напросто разный взгляд на одни и те же процедуры, Rational Rose предоставляет возможность создавать из диаграммы последовательности коммуникационную или же наоборот, а также осуществляет полностью автоматическую их синхронизацию.

      Диаграммы обзора взаимодействия

      Это диаграммы языка UML, которые относятся к разновидности диаграмм деятельности и включают в себя одновременно элементы Sequence и конструкции потока управления.

      Стоит отметить тот факт, что данный формат объединяет в себе Collaboration и Sequence diagram, которые предоставляют возможность с разных точек зрения рассматривать взаимодействие между несколькими объектами в формируемой системе.

      Диаграмма синхронизации

      Представляет собой альтернативный вариант диаграммы последовательности, который явным образом демонстрирует изменение состояния на линии жизни с определенной шкалой времени. Может быть достаточно полезной в различных приложениях реального времени.

      В чем преимущества?

      Стоит отметить несколько преимуществ, которыми отличается UML диаграмма пользования и другие:

      • Язык является объектно-ориентированным, вследствие чего технологии описания результатов проведенного анализа и проектирования являются семантически близкими к методам программирования на всевозможных объектно-ориентированных языках современного типа.
      • При помощи данного языка система может быть описана практически с любых возможных точек зрения, и точно так же описываются различные аспекты ее поведения.
      • Все диаграммы являются сравнительно простыми для чтения даже после относительно быстрого ознакомления с его синтаксисом.
      • UML позволяет расширить, а также вводить собственные графические и текстовые стереотипы, что способствует его использованию не только в программной инженерии.
      • Язык получил достаточно широкое распространение, а также довольно активно развивается.

      Недостатки

      Несмотря на то что построение UML-диаграмм отличается массой своих плюсов, довольно часто их и критикуют за следующие недостатки:

      • Избыточность. В преимущественном большинстве случаев критики говорят о том, что UML является слишком большим и сложным, и зачастую это неоправданно. В него входит достаточно много избыточных или же практически бесполезных конструкций и диаграмм, причем наиболее часто подобная критика идет в адрес второй версии, а не первой, потому что в более новых ревизиях присутствует большее количество компромиссов «разработанных комитетом».
      • Различные неточности в семантике. По той причине, что UML определяется комбинацией себя, английского и OCL, у него отсутствует скованность, которая является присущей для языков, точно определенных техникой формального описания. В определенных ситуациях абстрактный синтаксис OCL, UML и английский начинают друг другу противоречить, в то время как в других случаях они являются неполными. Неточность описания самого языка одинаково отражается как на пользователях, так и на поставщиках инструментов, что в конечном итоге приводит к несовместимости инструментов из-за уникального способа трактовки различных спецификаций.
      • Проблемы в процессе внедрения и изучения. Все указанные выше проблемы создают определенные сложности в процессе внедрения и изучения UML, и в особенности это касается тех случаев, когда руководство заставляет инженеров насильно его использовать, в то время как у них отсутствуют предварительные навыки.
      • Код отражает код. Еще одним мнением является то, что важность имеют не красивые и привлекательные модели, а непосредственно рабочие системы, то есть код и есть проект. В соответствии с данным мнением есть потребность в том, чтобы разработать более эффективный способ написания программного обеспечения. UML принято ценить при подходах, компилирующих модели для регенерирования выполнимого или же исходного кода. Но на самом деле этого может быть недостаточно, потому что в данном языке отсутствуют свойства полноты по Тьюрингу, и каждый сгенерированный код в конечном итоге будет ограничиваться тем, что может предположить или же определить интерпретирующий UML инструмент.
      • Рассогласование нагрузки. Данный термин происходит из теории системного анализа для определения неспособности входа определенной системы воспринять выход иной. Как в любых стандартных системах обозначений, UML может представлять одни системы в более эффективном и кратком виде по сравнению с другими. Таким образом, разработчик больше склоняется к тем решениям, которые являются более комфортными для переплетения всех сильных сторон UML, а также других языков программирования. Данная проблема является более очевидной в том случае, если язык разработки не соответствует основным принципам объектно-ориентированной ортодоксальной доктрины, то есть не старается работать в соответствии с принципами ООП.
      • Пытается быть универсальным. UML представляет собой язык моделирования общего назначения, который старается обеспечить совместимость с любым существующим на сегодняшний день языком обработки. В контексте определенного проекта, для того, чтобы команда проектировщиков смогла добиться конечной цели, нужно выбирать применимые возможности этого языка. Помимо этого возможные пути ограничения сферы использования UML в какой-то определенной области проходят через формализм, который является не полностью сформулированным, а который сам представляет собой объект критики.

      Таким образом, использование данного языка является актуальным далеко не во всех ситуациях.

      15.2. Назначение и состав диаграммы компонентов

      Диаграмма компонентов позволяет определить состав программных компонентов, в роли которых может выступать исходный, бинарный и исполняемый код, а также установить зависимости между ними.

      При разработке диаграмм компонентов преследуются цели:

      Спецификация общей структуры исходного кода системы;

      Спецификация исполнимого варианта системы.

      Данная диаграмма обеспечивает согласованный переход от логического к физическому представлению системы в виде программных компонентов. Одни компоненты могут существовать только на этапе компиляции программного кода, другие – на этапе его исполнения. Основными элементами диаграммы являются компоненты, интерфейсы и зависимости между ними . Кроме этого, на ней могут отображаться ключевые классы, входящие в компоненты.

      Компонент (англ. component) – это физическая часть системы. Компоненты, представляющие собой файлы с исходным кодом классов, библиотеки, исполняемые модули и т.п., которые должны обладать согласованным набором интерфейсов. Для их графического представления используются следующие графические символы.

      Рис. 15.2. Примеры компонентов

      Внутри прямоугольника записывается имя компонента и, возможно, некоторая дополнительная информация в виде помеченного значения.

      Компоненты могут иметь следующие стандартные стереотипы:

      - «file» – любой файл, кроме таблицы:

      o «executable» – программа (исполняемый файл);

      o «library» – статическая или динамическая библиотека;

      o «source» – файл с исходным текстом программы;

      o «document» – остальные файлы (например, файл справки);

      - «table» – таблица базы данных.

      Внутри компонента, как и класса, могут быть выделены дополнительные секции, в которых указываются предоставляемые (provided) или необходимые для работы (required) интерфейсы и классы, методы (operations), наименование файла-компонента (artifacts) и т.п.

      Рис. 15.3. Компонент с секциями

      Интерфейс (англ. interface) – это внешне видимый, именованный набор операций, который класс, компонент или подсистема может предоставить другому классу, компоненту или подсистеме, для выполнения им своих функций. В некоторых языках программирования, в частности в Java, интерфейс представляет собой отдельный класс, включаемый и реализуемый (конкретизируемый) в части программного кода операций в составе других классов. На диаграмме компонентов интерфейс отображается так же, как и на (слева от компонента необходимые для работы интерфейсы, справа - предоставляемые).

      Рис. 15.4. Способы отображения интерфейсов

      Отношение ассоциации отображается между компонентами и их интерфейсами. Отношение зависимости означает зависимость реализации одних компонентов от реализации других. Такое возможно в следующих случаях:

      В методах классов одного компонента (зависимого) осуществляется вызов методов или обращение к атрибутам классов другого компонента (независимого);

      Компонент состоит из других компонентов (например, при сборке исполняемого файла из файлов с исходными кодами);

      Компонент осуществляет чтение или запись данных в другой компонент;

      Связь между таблицами БД;

      Ввиду многоцелевого назначения диаграммы компонентов при ее разработке следует придерживаться следующих правил и рекомендаций .

      1. Перед разработкой диаграмм компонентов необходимо решить, из каких физических частей (файлов) будет состоять программная система. При этом должно быть решено две задачи – распределение классов по файлам исходных кодов и по подсистемам. В последнем случае может помочь распределение классов по специализированным (функционально-ориентированным на предметную область) пакетам. На этом этапе следует обратить внимание на такую реализацию системы, которая обеспечивала бы возможность повторного использования кода за счет рациональной декомпозиции системы, т. е. минимизировать количество связей между компонентами.

      2. При спецификации общей структуры исходного кода системы необходимо учитывать специфику языка программирования, с помощью которого реализуются компоненты. В частности в Java рекомендуется отдельный класс описывать в отдельном файле, несмотря на то, что язык позволяет описывать несколько классов в одном файле и использовать механизм внутренних классов. Диаграмма компонентов, применяемая для рассматриваемой цели, изображена на следующем рисунке.

      Рис. 15.5. Фрагмент диаграммы компонентов, специфицирующей структуру исходного кода

      Диаграмма на рис. 15.5 показывает состав классов (файлов), из которых состоит исполняемый компонент iskraPUT.jar, а также зависимости между классами.

      3. Для спецификации исполнимого варианта системы необходимо иметь в наличии предварительную топологию системы, т. е. набросок . Для каждого узла в сети может быть построена диаграмма компонентов, определяющая набор файлов, необходимых для работы подсистемы (подсистем) на отдельном рабочем месте.

      Рис. 15.6. Пример диаграммы компонентов, специфицирующей состав компонентов на рабочем месте пользователя

      4. На диаграмме могут быть представлены отношения зависимости между компонентами и включенными в них классами. Эта информация имеет важное значение для обеспечения согласованности между логическим и физическим представлениями системы. В этом случае зависимость можно показать двумя способами:

      Классы показать отдельно от компонента и связать компонент с каждым классом отношением зависимости. Например, на рис. 15.5 вместо компонентов с расширением «java» показать соответствующие им классы;

      Классы отобразить внутри символа компонента.

      6. Для наглядного отображения специфики компонентов можно вместо стандартного символа компонента со строковым стереотипом внутри использовать графические стереотипы.

      Диаграмма компонентов, в отличие от ранее рассмотренных диаграмм, описывает особенности физического представления системы. Диагра́мма компоне́нтов, Component diagram - статическая структурная диаграмма, показывает разбиение программной системы на структурные компоненты и связи (зависимости) между компонентами.

      Таким образом иллюстрируются отношения клиент-источник между двумя компонентами. После ознакомления с разделами («Пример», «Применение») вы можете попробовать свои силы в самостоятельном составлении диаграмм компонентов. В объектно-ориентированном сообществе идут дебаты о том, в чем состоит различие между компонентом и обычным классом. В UML 1 был отдельный символ для компонента (рис. 14.1). В UML 2 этого значка нет, но можно обозначить прямоугольник класса похожим значком.

      Кроме этого значка компоненты не принесли с собой никаких новых обозначений. Компоненты связываются между собой с помощью предоставляемых или требуемых интерфейсов, при этом шарово-гнездовая нотация обычно применяется только на диаграммах классов.

      В этом примере компонент Till (Касса) может взаимодействовать с компонентом Sales Server (Сервер продаж) с помощью интерфейса sales message (Сообщение о продажах). Вопрос о сущности компонента является предметом бесконечных споров. Компоненты – это не технология. Компоненты – это скорее стиль отношения клиентов к программному обеспечению. Они хотят, чтобы новые компоненты работали так же, как и прежние, и обновлять их согласно своим планам, а не по указанию производителей.

      Важно то, что компоненты представляют элементы, которые можно независимо друг от друга купить и обновить. В результате разделение системы на компоненты является в большей мере маркетинговым решением, чем техническим.

      В ходе проектирования архитектором или опытным программистом создается проектная документация, включающая текстовые описания, диаграммы, модели будущей программы. UML - является графическим языком для визуализации, описания параметров, конструирования и документирования различных систем (программ в частности).

      Диаграмма классов служит для представления статической структуры модели системы в терминологии классов объектно-ориентированного программирования. С этой точки зрения диаграмма классов является дальнейшим развитием концептуальной модели проектируемой системы. Для моделирования взаимодействия объектов в языке UML используются соответствующие диаграммы взаимодействия.

      На диаграмме кооперации в виде прямоугольников изображаются участвующие во взаимодействии объекты, содержащие имя объекта, его класс и, возможно, значения атрибутов. В отличие от диаграммы последовательности, на диаграмме кооперации изображаются только отношения между объектами, играющими определенные роли во взаимодействии. При этом представляются только компоненты-экземпляры программы, являющиеся исполнимыми файлами или динамическими библиотеками.

      Эта диаграмма, по сути, завершает процесс ООАП для конкретной программной системы и ее разработка, как правило, является последним этапом спецификации модели. И способствуют этому несколько специальных техник (Scrum of scrums, компонентные команды, участие архитектора в роли Product owner’а). Это и есть развитие реальной системы.

      И в этом нет ничего необычного и неверного. Компоненты программных систем, их разновидности. Все рассмотренные ранее диаграммы отражали концептуальные и логические аспекты построения модели системы. С тем чтобы пояснить отличие логического и физического представлений, необходимо в общих чертах рассмотреть процесс разработки программной системы.

      3.4.3. Применение диаграмм компонентов и размещения

      При этом уже в тексте программы предполагается организация программного кода, определяемая синтаксисом языка программирования и предполагающая разбиение исходного кода на отдельные модули. А это возможно, только если программный код системы будет реализован в форме исполняемых модулей, библиотек классов и процедур, стандартных графических интерфейсов, файлов баз данных.

      Диаграмма компонентов и особенности ее построения

      Для представления физических сущностей в языке UML применяется специальный термин – компонент. Компонент (component) - физически существующая часть системы, которая обеспечивает реализацию классов и отношений, а также функционального поведения моделируемой программной системы.

      Дополнительно компонент может иметь текстовый стереотип и помеченные значения, а некоторые компоненты – собственное графическое представление. Компонентом может быть исполняемый код отдельного модуля, командные файлы или файлы, содержащие интерпретируемые скрипты.

      В разработке диаграмм компонентов участвуют как системные аналитики и архитекторы, так и программисты. UML компоненты и стереотипы. Диаграмма развертывания предназначена для визуализации элементов и компонентов программы, существующих лишь на этапе ее исполнения (runtime). Можно также разбивать компоненты на части с помощью диаграмм составных структур. Данный раздел посвящен сразу двум диаграммам: компонентов и размещения, для которых можно использовать обобщающее название ‒ диаграммы реализации.