Электрические цепи для чайников: определения, элементы, обозначения. Территория электротехнической информации WEBSOR Основы расчета электрической цепи постоянного тока

Постановка задачи: в известной схеме цепи с заданными параметрами необходимо рассчитать токи, напряжения, мощности на отдельных участках. Для этого можно использовать следующие методы:

    преобразования цепи;

    непосредственного применения законов Кирхгофа;

    контурных токов;

    узловых потенциалов;

    наложения;

    эквивалентного генератора.

Будем рассматривать первых два метода.

    Метод преобразования цепи. Суть метода: если несколько последовательно или (и) параллельно включенных сопротивлений заменить одним, то распределение токов в электрической цепи не изменится.

а) Последовательное соединение резисторов. Сопротивления включены таким образом, что начало следующего сопротивления подключается к концу предыдущего (рис. 6).

Ток во всех последовательно соединенных элементах одинаков.

Заменим все последовательно соединенные резисторы одним эквивалентным
(рис. 7.).

По IIзакону Кирхгофа:

т.е. при последовательном соединении резисторов эквивалентное сопротивление участка цепи равно сумме всех последовательно включенных сопротивлений.

б) Параллельное соединение резисторов. При этом соединении соединяются вместе одноименные зажимы резисторов (рис. 8).

Все элементы присоединяются к одной паре узлов. Поэтому ко всем элементам приложено одно и тоже напряжениеU .

По Iзакону Кирхгофа:
.

По закону Ома
. Тогда
.

Для эквивалентной схемы (см рис. 7):
;
.

Величина , обратная сопротивлению, называется проводимостьюG .

;
= Сименс (См).

Частный случай: параллельно соединены два резистора (рис. 9).

в) Взаимное преобразование звезды (рис.10а) и треугольник сопротивлений (рис. 10б).

Преобразование звезды сопротивлений в треугольник:

Преобразование "треугольника" сопротивлений в "звезду":

    Метод непосредственного применения законов Кирхгофа. Порядок расчета:


Примечание: если есть возможность, то перед составлением системы уравнений по законам Кирхгофа, следует преобразовать "треугольник" сопротивлений в соответствующую "звезду".

Пример расчет электрических цепей постоянного тока

Расчет будем выполнять с применением законов Кирхгофа, предварительно преобразовав треугольник сопротивлений в звезду.

Пример. Определить токи в цепи рис. 11, еслиE 1 = 160 В,E 2 =100 В,R 3 =100 Ом,R 4 =100 Ом,R 5 =150 Ом,R 6 =40 Ом.

Преобразуем треугольник сопротивлений R 4 R 5 R 6 в звезду сопротивленийR 45 R 56 R 64 , предварительно указав условные положительные направления токов в цепи (рис. 12).

После преобразования электрическая цепь примет вид рис. 13 (в непреобразованной части электрической цепи направления токов не изменятся).

Вполученной электрической цепи 2 узла, 3 ветви, 2 независимых контура, следовательно, в цепи протекает три тока (по количеству ветвей) и необходимо составить систему трех уравнений, из которых поIзакону Кирхгофа – одно уравнение (на 1 меньше, чем узлов в схеме электрической цепи) и два уравнения – поIIзакону Кирхгофа:

Подставим в полученную систему уравнений известные значения ЭДС и сопротивлений:

Решая систему уравнений любым способом, определяем токи схемы электрической цепи рис. 13:

А;
А;
А.

Переходим к исходной схеме (см. рис. 11). По IIзакону Кирхгофа:

;

А.

По Iзакону Кирхгофа:

;

;

Токииполучились отрицательными, следовательно, их действительное направление противоположно выбранному нами (рис. 14).

Правильность решения проверяем, составив уравнение баланса мощности. Мощность источников (учтем, что ЭДС источника E 2 направленно встречно токуI 2 , протекающему через него):

Мощность потребителей:

Погрешность вычислений в пределах допустимого (меньше 5%).

Смоделируем электрическую цепь рис. 11 средствами моделирующего пакета ElectronicsWorkbench(рис. 15):

Р
ис. 15

При сравнении расчетных результатов и результатов моделирования, можно увидеть, что они отличаются (различия не превышают 5%), т.к. измерительные приборы имеют внутренние сопротивления, которые моделирующая система учитывает

В цепи постоянного тока действуют постоянные напряжения, протекают постоянные токи и присутствуют только резистивные элементы (сопротивления).

Идеальным источником напряжения называют источник, напряжение на зажимах которого, создаваемое внутренней электродвижущей силой (ЭДС ), на зависит от формируемого им в нагрузке тока (рис. 6.1а). При этом имеет место равенство . Вольтамперная характеристика идеального источника напряжения показана на рис. 6.1б.

Идеальным источником тока называют источник, который отдает в нагрузку ток, не зависящий от напряжения на зажимах источника, Рис. 6.2а. Его вольтамперная характеристика показана на рис. 6.2б.

В сопротивлении связь между напряжением и током определяется законом Ома в виде

Пример электрической цепи показан на рис. 6.3. В ней выделяются ветви , состоящие из последовательного соединения нескольких элементов (источника E и сопротивления ) или одного элемента ( и ) и узлы - точки соединения трех и более ветвей, отмеченные жирными точками. В рассмотренном примере имеется ветви и узла.

Кроме того, в цепи выделяются независимые замкнутые контуры , не содержащие идеальные источники тока. Их число равно . В примере на рис. 6.3 их число , например, контуры с ветвями E и , показанные на рис. 6.3 овалами со стрелками, указывающими положительное направление обхода контура.

Связь токов и напряжений в цепи определяется законами Кирхгофа.

Первый закон Кирхгофа : алгебраическая сумма токов, сходящихся в узле электрической цепи, равна нулю,

Втекающие в узел токи имеют знак плюс, а вытекающие минус.

Второй закон Кирхгофа : алгебраическая сумма напряжений на элементах замкнутого независимого контура равна алгебраической сумме ЭДС идеальных источников напряжения, включенных в этом контуре,

Напряжения и ЭДС берутся со знаком плюс, если их положительные направления совпадают с направлением обхода контура, в противном случае используется знак минус.

Для приведенного на рис. 6.3 примера по закону Ома получим подсистему компонентных уравнений

По законам Кирхгофа подсистема топологических уравнений цепи имеет вид

Расчет на основе закона Ома

Этот метод удобен для расчета сравнительно простых цепей с одним источником сигнала . Он предполагает вычисление сопротивлений участков цепи, для которых известна вели-

чина тока (или напряжения), с последующим определением неизвестного напряжения (или тока). Рассмотрим пример расчета цепи, схема которой приведена на рис. 6.4, при токе идеального источника А и сопротивлениях Ом, Ом, Ом. Необходимо определить токи ветвей и , а также напряжения на сопротивлениях , и .


Известен ток источника , тогда можно вычислить сопротивление цепи относительно зажимов источника тока (параллельного соединения сопротивления и последовательно соединен-

Рис. 6.4 ных сопротивлений и ),

Напряжение на источнике тока (на сопротивлении ) равно

Затем можно найти токи ветвей

Полученные результаты можно проверить с помощью первого закона Кирхгофа в виде . Подставляя вычисленные значения, получим А, что совпадает с величиной тока источника.

Зная токи ветвей, нетрудно найти напряжения на сопротивлениях (величина уже найдена)

По второму закону Кирхгофа . Складывая полученные результаты, убеждаемся в его выполнении.

Расчет цепи по уравнениям Кирхгофа

Проведем расчет токов и напряжений в цепи, показанной на рис. 6.3 при и . Цепь описывается системой уравнений (6.4) и (6.5), из которой для токов ветвей получим

Из первого уравнения выразим , а из третьего

Тогда из второго уравнения получим

и, следовательно

Из уравнений закона Ома запишем

Например, для цепи на рис. 6.3 в общем виде получим

Подставляя в левую часть равенства (6.11) полученные ранее выражения для токов, получим

что соответствует правой части выражения (6.11).

Аналогичные расчеты можно проделать и для цепи на рис. 6.4.

Условие баланса мощностей позволяет дополнительно контролировать правильность расчетов.

В зависимости от числа источников ЭДС (питания) в схеме, ее топологии и других признаков цепи анализируются и рассчитываются различными методами. При этом известными обычно являются ЭДС (напряжения) источников электроэнергии и параметры цепи, расчетными - напряжения, токи и мощности.

В этой главе мы ознакомимся с методами анализа и расчета цепей постоянного тока различной сложности.

Расчет цепей с одним источником питания

Когда в цепи имеется один активный элемент (источник электроэнергии), а другие являются пассивными, например резисторы /? t , R 2 ,..., то цепи анализируются и рассчитываются методом преобразования схем , сущность которого заключается в преобразовании (свертке) исходной схемы в эквивалентную и последующем разворачивании, в процессе которых определяются искомые величины. Проиллюстрируем этот метод для расчета цепей с последовательным, параллельным и смешанным соединением резисторов.

Цепь с последовательным соединением резисторов. Рассмотрим этот вопрос на следующем качественном примере. От идеализированного источника ЭДС Е (R 0 = 0), на выходных зажимах которого имеется напряжение U, т.е. когда E=U , через последовательно соединенные сопротивления R { , R 2 ,..., R n питается нагрузка (приемник) с сопротивлением R H (рис. 2.1, а).

Рис . 2.1

Требуется найти напряжение, сопротивление и мощность цепи эквивалентной заданной, изображенной на рис. 2.1, б, делая соответствующие выводы и обобщения.

Решение

А. При известных сопротивлениях и токе напряжения на отдельных элементах цепи, согласно закону Ома, находились бы так:

Б. Общее напряжение (ЭДС) цепи, согласно второму закону Кирхгофа, запишется так:



Г. Умножив все члены (2-2) на ток / или (2-5) на Р, будем иметь откуда

В. Разделив все члены (2-2) на ток /, получим где

Формулы (2-3), (2-5), (2-7) показывают, что в цепи с одним источником питания и последовательным соединением сопротивлений эквивалентные напряжение, сопротивление и мощность равны арифметическим суммам напряжений, сопротивлений и мощностей элементов цепи.

Приведенные соотношения и выводы свидетельствуют о том, что исходную схему по рис. 2.1, а с сопротивлениями /? 2 , R„ можно заменить (свернуть) простейшей по рис. 2.1, б с эквивалентным сопротивлением R 3 , определяемым по выражению (2-5).

а) для схемы по рис. 2.1, б справедливы соотношения U 3 = U = RI , где R = R 3 + R u . Исключив из них ток /, получим выражение

которое показывает, что напряжение U 3 на одном из сопротивлений цепи, состоящей из двух, соединенных последовательно, равно произведению общего напряжения U на отношение сопротивления этого участка R 3 к общему сопротивлению цепи R. Исходя из этого

б) ток и напряжения в цени но рис. 2.2, б можно записать в различных вариантах:

Решенные задачи

Задача 2.1. Чему равны сопротивление, напряжение и мощность цепи по рис. 2.1, а, если I = 1 A, R x = 1 Ом, Д 2 = 2 Ом, = 3 Ом, R u = 4 Ом?

Решение

Напряжения на резисторах, очевидно, будут равны: U t =IR^ = 1 1 = 1 В, U 2 = IR 2 = = 1 2 = 2 В, U n = /Л я = 1 3 = 3 В, t/ H = ZR H = 1 4 = 4 В. Эквивалентное сопротивление цепи: R 3 = R { + /? 9 + R n = 1 + 2 + 3 = 6 Ом. Сопротивление, напряжение и мощность цепи: /? = &, + /?„ = 6 + 4= 10 Ом; U= U { + U 2 + U„+U n = 1+2 + 3 + 4 = 10 В, или U=IR = = 1 10= 10 В; Р= Ш= 10 - 1 = 10 Вт, или Р= UJ+ U 2 I + U n I+ U U I= 11+21+31 + + 4 1 = 10 Вт, или Р = PR X + PR 2 + PR a + PR n = 12 1 + 12 2 + 12 3 + 12 4 = 10 Вт, или Р = Щ /R x +U? 2 /R 2 +UZ /R n +1/2 /R n = 12 / 1 + 22/2 + 32/3 + 42 /4 = 10 Вт.

Задача 2.2. В цепи по рис. 2.1, а известны: U = МО В, R { = Ом, R 2 = 2 Ом, = = 3 Ом, R H = 4 Ом. Определить U 2 .

Решение

R = /?! + /?, + Л 3 + Л 4 = Л,+ Л Н = 1+2 + 3 + 4 = 6 + 4 = 10 Ом, 1=11/R= 110/10 = = 11 А, // 2 = Л? 2 = 11 2 = 22 В или U 2 =UR 2 /R = 110 2 / 10 = 22 В.

Задачи, требующие решения

Задача 2.3. В цепи по рис. 2.1, а известны: U = МО В, R^ = Ом, R 2 = 2 Ом, R n = = 3 Ом, R u = 4 Ом. Определить Р„.

Задача 2.4. В цепи по рис. 2.1, б известны: U= 110 В, U H = 100 В, = 2 Ом. Определить Р э.

Задача 2.5. В цепи по рис. 2.1,6 известны: U= 110 В, R t = 3 Ом, Д н = 2 Ом. Определить }