Как сделать проектор голограмм для телефона. Создаем голограмму на мобильном телефоне Как работает голограмма на телефоне

Делаем простое приспособление для просмотра 3D голограмм на вашем смартфоне или планшете. Вы когда-нибудь хотели лицезреть видео или смотреть картинки в 3D без очков? Из этого урока вы узнаете, как сделать очень простое устройство для просмотра 3D-голограмм на вашем смартфоне или планшете. Все, что вам нужно для этого, - пять минут вашего времени. И да, сегодня нам не понадобятся Ардуино, Raspberry и другие платы.

Для нашего устройства нам понадобится простой набор комплектующих:

  • Прозрачный акриловый / пластиковый лист 0,5 мм (вы можете использовать пластиковые листы, используемые в упаковке)
  • Доступ к принтеру (если возможно)
  • Ножницы
  • Режущее лезвие
  • Прозрачная лента
  • Линейка
  • Карандаш/ручка
  • Смартфон

Как работает 3D-голограмма из пирамиды?

Голографическая пирамида - это простое устройство, которое может быть изготовлено путем создания из листа пластика фигуры в форме пирамиды с обрезанным верхом. Устройство создает трехмерную иллюзию для зрителя и делает изображение или видео таким, как если бы оно находилось в воздухе. Работает по принципу Призрака Пеппера (англ. википедия). Четыре симметрично противоположных варианта одного и того же изображения проецируются на четыре грани пирамиды. В принципе, каждая сторона проецирует изображение, падающее на нее, в центр пирамиды. Эти проекции работают в унисон, образуя целую фигуру, которая создает трехмерную иллюзию.

Создаем пирамиду для 3D-голограмм

1. Распечатайте шаблон, показанный ниже, на листе бумаги формата A4.

ПРИМЕЧАНИЕ . Если у вас нет доступа к принтеру, вы также можете создать шаблон самостоятельно. Нарисуйте основную «трапецию» на листе бумаги, используя размеры на рисунке выше. Параллельные стороны = 1 см и 6 см, две другие стороны равны 4,5 см каждая. Вы всегда можете удвоить или утроить размеры пропорционально для использования на большом дисплее.

2. Обведите форму на пластиковом листе, используя линейку и ручку. Для трапециевидного шаблона выделите четыре аналогичных контура на пластиковом листе. Теперь аккуратно вырежьте контуры режущим лезвием и линейкой. Постарайтесь сделать свои разрезы как можно более точными для создания более идеальной пирамиды.

3. Если вы использовали шаблон распечатки: очень легко надрежьте красные края с помощью режущего лезвия. Это позволит вам лучше сложить края и сформировать форму пирамиды. Склейте открытые края листа, используя прозрачную ленту.

Если вы использовали трапециевидный шаблон: соедините четыре края, чтобы сформировать форму пирамиды. Соедините их. В любом случае, в итоге у вас будет пирамида, подобная той, что показана ниже.

4. Вот и все! Вы сделали себе пирамиду для будущих голограмм! Все, что вам нужно сделать сейчас, это воспроизвести голограмму на вашем телефоне. Поместите голограмму в центре экрана, как показано на рисунке ниже, и наслаждайтесь шоу. Не забудьте выключить свет в комнате, прежде чем начать воспроизведение видео.

5. Теперь самое важное! Можно найти множество голограмм на YouTube . То что может получиться - вы можете увидеть на видео ниже.

Прогресс не стоит на месте. И вот, доступно такое новшество, как просмотр голограммы на обычном телефоне. Затратив всего лишь за 5 минут, вы получите возможность увидеть 3D изображение, которое удивит не только детей, но и взрослых.

Необходимые элементы

Чтобы увидеть 3D изображение на смартфоне для начала понадобится изготовить 3D пирамидку. Какие же элементы необходимы для её изготовления:

  • простой карандаш;
  • маркер;
  • линейка (необязательно длинная);
  • бумага (желательно в клетку, чтобы не использовать транспортир);
  • ножницы (чтобы вырезать трафарет);
  • нож (идеально подойдёт канцелярский);
  • скотч (прозрачный, неширокий) или клей для пластмассы;
  • пластиковые контейнеры от CD дисков (прозрачные).

Чертим трапецию

После того как подготовлены все необходимые элементы, следует приступить к черчению трапеции (трафарета). Для этого берём лист бумаги и с помощью линейки и карандаша чертим трапецию с такими сторонами:

  • низ – 6 сантиметров;
  • верх – 1 сантиметр;
  • высота – 3,5 сантиметра.

После окончания берём ножницы и вырезаем получившуюся трапецию. Это будет трафарет с помощью которого будут сделаны стены будущей пирамидки.

Вырезать трапеции из коробочек от CD (4 штуки)

Это самый трудоёмкий этап изготовления пирамидки, требующий повышенного внимания. Причина трудоёмкости в том, что пластик, из которого изготовлена коробка CD диска очень хрупкий и при сильном давлении может начать трескаться.

  1. Разбираем контейнер от диска.
  2. Прикладываем получившийся трафарет.
  3. Обводим трапецию маркёром.
  4. Берём линейку и нож.
  5. Приложить линейку по линии маркёра и аккуратно провести по ней ножом.
  6. После появления бороздок линейку можно убрать.
  7. Вырезать трапецию.
  8. По образцу получившейся трапеции вырезать ещё 3 штуки. Всего должно быть 4.

Скрепить 4 детали

После подготовки деталей можно приступить к их соединению. Для этого следует взять всё 4 детали и собрать их в пирамиду, где низом будет сторона в 1 сантиметр. Их можно скрепить полосками скотча или проклеить клеем для пластмассы. А можно сделать и то, и то, для надёжности конструкции: скрепить скотчем, чтобы не распадалась и швы закрепить клеем.

Загрузить на телефон специальное видео

После того как 3D пирамидка готова осталось подготовить смартфон. Есть несколько доступных вариантов:

  1. Скачать специальное видео с YouTube.
  2. Скачать программу для воспроизведения голограмм. В такой программе уже имеется видео и можно с её помощью скачать ещё.

Положить конструкцию на телефон

Теперь остался последний шаг и можно будет увидеть 3D голограмму в середине пирамидки. На первых секундах после запуска видео появляется рисунок в виде крестика, по граням которого надо поместить изготовленную пирамидку. Для более точного размещения лучше нажать паузу и выставить как надо.

Вот так с помощью подручных средств вы сможете изготовить пирамидку за 5 минут, в центре которой вы увидите 3D изображение. Благодаря разнообразию доступных видео можно посмотреть удивлять окружающих разными голограммами и даже использовать их в качестве ночника.

Сама новость про RED и смартфоны обескуражила многих обывателей: «Серьезно? Они же камеры делают - какие еще смартфоны...»

Но ещё более неожиданным стало заявление о том, что смартфон будет поддерживать голограммы !

Многие решили, что ребята сошли с ума, либо это какой то обман века, странный пиар или…
Неужели это возможно? Может не за горами и световой меч?

- Да, это возможно.

Но не так как нам рисует голливуд - проекцию принцессы Леи мы не увидим. Скорей всего вы просто не знаете что такое голограмма потому что смотрели много фантастики вместо изучения физики. Как раз для таких людей и написана эта статья - просто о сложном.

Голография vs Фотография

- Что же такое голограммы? Посмотрим википедию...
Голография - набор технологий для точной записи, воспроизведения и переформирования волновых полей оптического электромагнитного излучения, особый фотографический метод, при котором с помощью лазера регистрируются, а затем восстанавливаются изображения трехмерных объектов, в высшей степени похожие на реальные.

Скорей всего понимания не прибавилось - лучше посмотрите видео


Если вам показалось, что это зеркала и банки от фанты за стеклом - пересмотрите еще раз.
Это и есть настоящие голограммы. Никакой хитрости - только наука.

Как это работает?

Для начала ответим на вопрос - как мы вообще воспринимаем объем ? Это возможно благодаря тому, что у нас два глаза - каждый видит объект с разных сторон.


Мозг обрабатывает эти две немного разных картинки и строит в нашем сознании одну объемную модель. Благодаря этому мы можем оценивать расстояние до предметов просто посмотрев на них - мозг автоматически оценивает напряжение глазных мышц и определяет расстояние с довольно высокой точностью.

Глаз как оптический прибор

Камера работает на тех же принципах что и человеческий глаз - поэтому рассмотрим глаз как оптический прибор.


Глаз реагирует на свет , а свет, как известно - это электромагнитная волна , точно такая же как, например, вайфай - только более высокой частоты .

Для того чтобы глаз что то увидел - в него из этой точки должен прийти свет, когда мы видим какой то объект - мы регистрируем отраженный этим объектом во все стороны свет, который отражает во все стороны каждая точка поверхности

Каждая точка поверхности отражает свет во все стороны!

Это крайне важный принцип, который нужно понять - через каждый кусочек пространства проходит целая мешанина различных волн в самых разных направлениях, но видим мы только то, что попадает к нам в глаз через зрачок.

Из всей мешанины волн в глаз/фотоаппарат попадает лишь маленький кусочек от волны, который проскочил через зрачок.


Когда мы поворачиваем голову, чтобы увидеть объект находящийся сбоку - в наш глаз начинают попадать кусочки волн, отраженных от этого объекта.

Эти волны всегда были тут , просто они невидимы для глаза, пока не будут идти в него спереди.

По тому же принципу работает фотоаппарат/кинокамера - из всего многообразия волн проходящих во все стороны через пространство - фиксируется только часть, которая идет в одном направлении - поэтому фотографии выглядят плоскими - это всего лишь малая часть изначальной информации

Голография


Теперь наконец можем перейти к принципу создания объемных снимков , рассмотрим часть пространства, обведенную фиолетовым, представим что поставили перед объектом стекло.


Если бы нам удалось каким то образом заморозить/запомнить картину волн, проходящих через это стекло, а затем воспроизвести в точности все амплитуды, частоты и фазы - тогда бы мы сохраняли не маленький зеленый кусочек от волны, который несет информацию только об одном направлении , а целую картину всех волн, которая содержит информацию обо всех возможных углах обзора.

Если не видно разницы...

Если из стекла выходит точно такая же картина из волн, которые испускал объект на момент «запечатывания» этой картины - визуально будет невозможно отличить такую «фотографию» от реального объекта, причем объект будет виден под всеми углами так как восстановлена вся картина волн, проходивших через пространство


Камера видит только в одном направлении - так что для того чтобы зафиксировать весь фронт волны нам нужно сделать снимки во всех направлениях, а потом объединить их в одну объемную картину - на таком принципе основано 3D сканирование.

Такой метод съемки 3D объектов аналогичен FDM 3D печати пластиком, которые на самом деле печатают в 2D просто много много раз - на качественном уровне это «костыль»

Реализация

Дело за малым - осталось всего лишь придумать как запечатать в пространстве все радиоволны, которые через него проходят, а затем восстановить, тут я пожалуй не буду углубляться в технические детали - главное понять основной принцип. (Если будет интерес - есть возможность снять голограмму в лаборатории спектроскопии, тут много нюансов - так что это тема для следующей статьи).

Останавливаем свет

Проблема в том, что волны находятся в постоянном движении . А если мы хотим зафиксировать картину в пространстве - мы должны прореагировать с каким то фоточувствительным материалом в течение некоторого времени и запечатываемая картина должна быть неподвижна на это время .

Делая обычную фотографию - мы не останавливаем свет, мы вырезаем узкое направление вдоль которого экспонируем матрицу лучами с постоянной амплитудой, каждый из которых соединяет точку объекта и пиксель на матрице.


Стоячие волны

Мы хотим запечатлеть все направления разом , и у нас нет глаза Агамото , чтобы заморозить время - придется думать головой.

Хорошо что это уже сделал еще в 1947 году Денеш Габор (тысяча девятьсот сорок седьмом году, Карл!). За что получил нобелевскую премию.

Суть в следующем - если сложить две волны с одинаковой частотой и разными направлениями, то в местах пересечения максимумов и минимумов этих волн возникнет стоячая волна - виртуальная волна(так как световые волны друг на друга не действуют), которая является суммой двух бегущих волн одинаковой частоты. За счет этого можно засветить неподвижную картину из пересечений двух волн в фотопластинке.

Засвечивая одну пластинку тремя цветами опорных волн - красным синим и зеленым - мы получим полноцветную голограмму, не отличимую от оригинала.

Если теперь убрать предмет и посветить на пластинку опорной волной - из пластинки выйдет точная копия волн, которые создавал сканируемый предмет.

Технологические требования

Так как очень важно, чтобы частоты предметной и опорных волн были одинаковые - необходим невероятно стабильный источник света, чтобы стоячая волна оставалась неподвижной - при небольшом различии частот - волна начнет двигаться и голограмма смажется.

Зеленый свет

Такой источник существует - он называется лазер . До изобретения лазера в 1960 году голография не имела коммерческого развития, для записи использовались газоразрядные лампы.

В 2009 году был изобретен первый в мире полупроводниковый зеленый лазер (красный и синий уже были). До этого зеленые лазеры использовали удвоение частоты инфракрасного лазерного диода, пропущенного через нелинейный оптический кристалл, удваивающий частоту. Однако данная конструкция имеет крайне низкий кпд, высокую стоимость, сложность и т.д.

Изобретение полупроводникового зеленого лазера дало зеленый свет разработке миниатюрных RGB лазерных проекторов . Прошло уже 9 лет - вполне достаточное время для перехода технологии в промышленное использование- и сейчас мы начинаем наблюдать самых активных участников рынка, скоро будет еще больше классных и интересных продуктов

Разрешающая способность

Разрешающая способность записывающей пластинки должна быть невероятно высокой - ведь расстояние между засвечиваемыми узлами стоячей волны сравнимо с длинной волны света, а это ~600нм! То есть разрешающая способность как минимум 1666 мм^-1.

Если при фотографировании - каждой точке матрицы соответствует точка на объекте, то в голограмме - на каждую точку матрицы падает свет от всех точек объекта, то есть каждая часть голограммы содержит информацию о всем объекте.

Выводы:

  1. Принцип голографии был придуман полвека назад, но реализовать его на хорошем уровне не позволяло отсутствие технологий - в частности лазеров, материалов для записи
  2. Даже используя обычные пластинки - создание голограммы достаточно тонкий и кропотливый процесс - сделать голографический полноцветный сканер и голографический экран с цифровым управлением в смартфоне - очень сильный вызов.
  3. Даже возможность делать одну статическую голограмму со штатива(не говоря уже о записи голограммы «с рук») и отображать ее на революционном голографическом дисплее в форм факторе смартфона - уже будет достижением которое изменит целые индустрии.
P.S. Также голография используется в производстве процессоров и микроскопии, позволяя преодолеть дифракционный предел обычного фотошаблона.

UPD: Спасибо за комментарий

Относительно недавно была статья про камеры и дисплеи светового поля, похоже, что RED как раз на этой основе и готовит свою новинку

Полезные советы

Вы сможете превратить свой смартфон в голографический 3-D плейер благодаря простому проекту, который показал в своем видео пользователь по кличке Mrwhosetheboss.

Этот пользователь создал специальное приспособление, которое, в совокупности с видео-рядом, созданным специально для голограммы , создает иллюзию 3-D картинки, парящей в воздухе .


Вам понадобится:

Старый кейс из-под дисков

Острый нож

Немного клейкой ленты (скотч)

Линейка

Бумага в клетку.

1. Начертите на бумаге 3 трапеции с размерами 1 см х 3,5 см х 6 см.

2. Вырежьте трапецию.


3. Возьмите кейс для дисков, удалите аккуратно боковины, обведите 4 раза трапецию, вырезанную из бумаги.

4. С помощью канцелярского ножа вырежьте 4 трапеции.


5. Склейте все трапеции, чтобы получилась часть пирамиды.

6. Скачайте демо-видео на свой смартфон и используйте данную конструкцию для просмотра голограммы.


Вот несколько видео клипов, которые можно использовать для данной технологии:

Как сделать голограмму

Голографическое видео

Видео клипы, которые используются для этого приспособления, проигрывают одну и ту же картинку с четырех сторон .

Когда все эти четыре видео-ряда отражаются в панелях созданного устройства , вы получаете иллюзию 3-D голограммы.

Голографический эффект

К сожалению, такую иллюзию нельзя назвать голограммой, т.к. здесь используются 2-D картинки и видео , чтобы создать нужный эффект.

Настоящая голограмма создает 3-D изображение, и использует технологию, разделяющую лазерные лучи.