Механизмы якорных и швартовных устройств. Эксплуатация якорно-швартовных устройств Способы подогрева двигателей брашпиля лебедок на судне

Общие сведения. Якорное устройство судна — это совокупность приспособлений и механизмов, служащих для удержания судна на якоре, его подъёма, отдачи и хранения. Якорное устройство включает: якоря; якорные цепи; якорные и палубные клюзы; винтовые стопора, закрепляющие якорь и цепь; подъёмный механизм — якорная лебёдка (брашпиль, или шпиль с тормозами и счётчиками длины вытравленной цепи); цепной ящик с устройствами крепления и отдачи якорных цепей (жвако-галс и глаголь-гак).

Швартовное устройство судна — совокупность приспособлений и механизмов для удержания судна во время стоянки судна у причала или у борта другого судна. Швартовное устройство включает швартовы, кнехты, утки, киповые планки, швартовные клюзы, вьюшки, швартовные лебёдки или шпили.

Основными типами якорно-швартовных механизмов являются якорно-швартовный брашпиль или якорно-швартовные шпили.


Схемы брашпиля и шпиля приведены на рисунках:

Техническое обслуживание брашпиля и шпиля включает:

Наружный осмотр брашпиля и шпиля;

Проверка уровня масла в редукторах;

Проворачивание брашпиля и шпиля в течение 1-2 минут на полной скорости вращения с целью предупреждения контактных повреждений в зубчатых передачах и шарикоподшипниках;

Шприцевание стопоров якорных цепей, приводов тормозных и разобщительных устройств якорных цепей. Особенно тщательно необходимо смазать внутренние втулки цепных звёздочек через установленные на их верхних буртах колпачковые маслёнки;

Слив отстоя масла из редукторов и пополнение его до рабочего уровня (при наличии в отстое металлических включений вскрыть редуктор соответствующего механизма, найти и устранить причину повышенного износа деталей);

Проверка состояния резьбовых соединений;

Замена масла в редукторах брашпиля и шпиля через каждые два года.

Дефектоскопия и ремонт якорного устройства.

Определяющими дефектами якорного устройства являются: механическое и коррозионное изнашивание якорей, цепей, цепного ящика, жвака-галса, глаголь-гака, бортовых клюзов, стопоров. Дефекты якорного устройства определяют внешним осмотром и измерением.

Якорь заменяют, если его первоначальная масса из-за коррозии и изнашивания уменьшится более чем на 20%. При ремонте якорей допускается по согласованию с Российским морским Регистром судоходства применение сварки при устранении трещин в сварных швах (сварных конструкциях). Отремонтированные якоря испытывают бросанием на стальную плиту толщиной 100 мм с высоты от 3,5 до 4,5 м в зависимости от массы якоря. После испытаний якорь подвешивают, обстукивают и по звуку определяют наличие трещин.

Звенья цепей и другие элементы цепей с трещинами и износами свыше 10% калибра цепи заменяют на новые. Отремонтированные цепи испытывают по смычкам пробной нагрузкой на цепопробных станах. Величина нагрузки зависит от калибра и категории цепи (по ГОСТ 228-79).

Цепной ящик, палубные клюзы следует периодически очищать от грязи и ржавчины и окрашивать.

Специальное устройство для быстрой отдачи коренного конца якорной цепи должно быть хорошо расхожено и смазано в трущихся частях.

Изношенные и повреждённые детали якорных цепей (жвака-галс, глаголь-гак, вертлюга, скобы) либо восстанавливают электросваркой, либо заменяют.

Дефектоскопия и ремонт швартовного устройства.

К характерным дефектам швартовного устройства относят: изнашивание швартовных клюзов, кнехтов, киповых планок и направляющих роульсов, а также трещины и поломки. Стальные кнехты, киповые планки и клюзы ремонтируют электросваркой, а чугунные — заменяют.

Стальные тросы заменяют, если число лопнувших проволок составляет более 10% их количества в тросе на длине равной восьми его диаметрам.

Дефектоскопия и ремонт брашпиля и шпиля.

Фундаментная рама брашпиля и стальные литые стойки практически не изнашиваются при хорошем уходе за ними. У стоек фундаментной рамы возможно изнашивание поверхностей, на которых установлены постели подшипников. На этих опорных поверхностях, из-за ослабления посадки подшипников в своих постелях, образуются наклёп и вмятины. Эти дефекты устраняют способом калибровки постелей подшипников. Если вмятины и наклеп невелики, то ограничиваются ручной калибровкой. Снимают грузовые валы, стойки прочно крепят к раме. Изготавливают фальшвал, подобный грузовому валу, и укладывают его в подшипники. Покрытые краской шейки фалышвала оставляют следы на поверхности подшипников. Эти неровности шабрят одновременно на всех подшипниках. Операцию повторяют до тех пор, пока фальшвал не ляжет в подшипники. Такая укладка фальшвала гарантирует правильную геометрическую форму и соосность постелей на всех стойках. В случае больших деформаций раму с прочно скреплёнными стойками устанавливают на плите расточного станка и поверхности протачивают с одной установки, после чего постели подшипников калибруют с помощью фальшвала. Трудоёмкость ручных работ в этом случае значительно сокращается.

Подшипники, имеющие изнашивание на внутренней поверхности, в случае, если валы ремонтируют наплавкой шеек, можно расточить (если это позволяет толщина стенки вкладыша), а вал наплавить и проточить с учётом диаметра расточенного подшипника. Если же вал в хорошем состоянии, заменяют вкладыши подшипников на новые. Подшипники, ослабленные в постели, подлежат замене.

В судовом машиностроении всё больше внедряют подшипники качения вместо подшипников скольжения, что упрощает ремонт, который состоит в их замене.

Ремонт вала, имеющего изнашивание шеек и изгиб, выполняют в следующей последовательности. Вал устанавливают на станок в центрах, проворачивают и с помощью индикатора и линейки определяют величину изгиба. Если изгиб настолько велик, что вал установить в центрах невозможно, его укладывают на призмы плиты, нагревают в районе изгиба и гидравлическим прессом устраняют изгиб. Затем, проворачивая вал в центрах на станке, следят за результатами правки. Вал с устранённым изгибом Считают выправленным, если биение не превышает 1 мм. После правки на станке протачивают изношенные рабочие шейки на 10-12 мм под дуговую наплавку, желательно автоматическую, которую производят в три слоя. После неё вал подвергают термической обработке, режим которой устанавливают, уточнив химический состав стали. Затем вал снова устанавливают на станок и проверяют биение, если он деформировался, вал снова правят и приступают к токарной обработке и фрезерованию шпоночных пазов.

При дефектоскопии следует знать предельно допустимые износы: для шеек грузового вала овальность равна 0,25 мм, конусообразность — 0,15 мм; для шеек промежуточного вала — овальность 0,30 мм, конусообразность — 0,15 мм; для вала редуктора — овальность и конусообразность составляет 0,06-0,8 мм.

Задиры, риски и забоины, обнаруженные на валах шестерён, шлифуют на токарном станке, или вручную с помощью наждачного полотна, смоченного в масле, а затем окончательно обрабатывают пастой ГОИ.

Зубчатые колёса и шестерни, имеющие значительные повреждения (трещины, большое изнашивание зубьев), заменяют на новые.

Дефекты кулачковых и зубчатых муфт: смятия, задиры, изнашивание рабочих поверхностей кулачков, звёздочек и зубьев, ослабление посадки полумуфт на валах, поломка кулачков и зубьев и т.п. Задиры и смятие кулачков и зубьев исправляют опиловкой и шабрением. При значительном изнашивании кулачков восстановление их толщины производят электронаплавкой с последующей обработкой на строгальном станке. Затем рабочие поверхности кулачков пригоняют на краску по кулачкам полумуфт с точностью два-три пятна на 1 см2. Боковой зазор между кулачками у отремонтированных муфт с нерабочей стороны должен быть в пределах 1,5-2 мм.

Ослабление посадки полумуфт на валах устраняют электронаплавкой с последующей расточкой под посадочный размер. Звёздочки и полумуфты со значительным изнашиванием, трещинами, поломанными кулачками и зубьями заменяют новыми. Монтируя муфты, необходимо выдержать параллельность плоскостей соединения полумуфт и их перпендикулярность осям валов с точностью 0,02 мм на 1 м длины.

У упругих втулочно-пальцевых муфт возможно изнашивание упругих колец, погнутость пальцев, выработка отверстий под пальцы. Изнашивание упругих колец и выработка отверстий под пальцы допускаются до 2 мм на диаметр.

Зазор между упругим элементом и отверстием не должен превышать 1-2 мм. При замене упругих колец они должны быть посажены на пальцы плотно, без зазора.

Погнутые пальцы заменяют. Разработанные отверстия под пальцы развёртывают на больший диаметр, или отверстия заваривают электросваркой с последующим сверлением новых. Для увеличения срока службы пальцев эластичных муфт можно их периодически поворачивать.


Снабжение судов якорями, якорными цепями и канатами

Снабжение якорями, якорными цепями и канатами речных судов определяют по Правилам Российского речного Регистра (Глава: Снабжение судов) в зависимости от типа и класса судна но характеристике снабжения N c , м 2

где L, B, H - соответственно длина, ширина, высота борта судна до первой расчётной палубы, м;

l, h - длина и средняя высота отдельных надстроек и рубок, м;

N C =78*(11,8+3,5)+1*(74*2,5+20*5,0)=1478,4 м 2

Количество и длину швартовых канатов на судне выбирают в зависимости от типа судна и условий плавания. Согласно требованиям Российского Речного Регистра разрывное усилие стального швартового каната должно быть не менее, кН

· для судов с характеристикой снабжения более 1000 м 2

F раз =171+3,92*10 -2 (1478,4-1000)= 189,7 кН

калибр цепи d=25 мм

масса одного метра цепи - 14,9 кг

масса каждого якоря - 570кг

количество якорей - 2

Требования Российского речного Регистра к якорно-швартовным механизмам

Требования к якорно-швартовным механизмам и его приводу излагаются в действующих Правилах Российского речного Регистра, которые издаются каждые пять лет.

Согласно Правил для отдачи и подъема якорей массой 50 кг и более, а также удержания судна на якорной стоянке должен быть установлен шпиль или брашпиль. При массе якоря 150 кг и более на этих механизмах должны быть звёздочки.

На буксирах-толкачах всех классов до 590 кВт включительно, оборудованных буксирными лебёдками, допускается замена якорных цепей стальными канатами в кормовом якорном устройстве и использовать в качестве механизма подъема якоря буксирные лебёдки.

На малых судах при применении вместо цепей канатов, разрешается установка якорных лебёдок. На самоходных судах длиной более 60 м, несамоходных толкаемых судах, предназначенных для перевозки воспламеняющихся жидкостей, и толкачах, тормоза механизмов подъёма якорей должны быть оборудованы устройством дистанционной отдачи якоря, исключающим самопроизвольную отдачу якоря..

Устройства дистанционной отдачи якорей должны обеспечивать:

· управление из рулевой рубки (на несамоходных судах - из рулевой рубки толкача) отдачей правого носового, а для толкачей и кормового якоря;

· возможность остановки из рулевой рубки якорной цепи при любой вытравленной её длине;

· продолжительность отдачи якоря не более 15 с, с момента включения дистанционного управления отдачей якоря.

Стопоры и другое якорное оборудование, для которого предусматривается дистанционное управление, должны иметь местное ручное управление. Конструкция якорного оборудования и узлов его местного ручного управления должны обеспечивать нормальную работу при выходе из строя отдельных узлов или всей системы дистанционного управления.

Привод якорно-швартовных механизмов должен соответствовать следующим требованиям:

1. Мощность привода якорно-швартовного механизма должна обеспечивать подтягивание судна к якорю, отрыв и подъём любого из якорей со скоростью не менее 0,12 м/с при номинальном тяговом усилии на звёздочке F 1 , H

F 1 = 22,6 m d 2

где m - коэффициент прочности, принимаемый равным 1,0 - для цепей с распорками; 0,9 - для цепей без распорок;

2. Привод должен обеспечивать выбирание якорной цепи с указанной скоростью и тяговым усилием F 1 в течение не менее 30 минут без перерыва, а также спуск одного якоря на расчетную глубину якорной стоянки.

3. Пусковой момент привода якорного механизма должен создавать тяговое усилие на звёздочке при неподвижной якорной цепи не менее 2F 1 .

4. Привод якорного механизма должен обеспечивать одновременный подъем свободно висящих якорей с половины расчётной глубины якорной стоянки.

5. При подходе якоря к клюзу привод должен обеспечивать скорость выбирания цепи не более 0,12 м/с.

6. Привод швартовного механизма должен обеспечивать непрерывное выбирание швартовного каната при номинальном тяговом усилии с номинальной скоростью не менее 30 минут.

7. Скорость выбирания швартовного каната, как правило не должна превышать 0,3 м/с при номинальном тяговом усилии. Кроме того должна быть обеспечена возможность выбирания каната со скоростью не более 0,15 м/с.

8. Привод швартовного механизма должен быть способен создавать усилие не менее двукратного номинального тягового усилия в течении 15 с.

Внешние силы, действующие на судно

Воздействие ветра и течения на судно вызывает основную нагрузку на якорную цепь при стоянке и определяет статический момент сопротивления на валу электродвигателя в процессе съемки с якоря, когда судно подтягивается к месту заложения якоря.

На стоянке при совпадении по направлению ветра и течения возникает наибольшее воздействие внешних сил на судно и обобщенная сила для винтовых судов определяется арифметической суммой трех составляющих

F " = F B + F " T + F " Г

где F B - сила ветрового воздействия на надводную часть судна;

F" T - сила течения действующая на подводную часть судна;

F" Г - сила течения действующая на неподвижные винты.

Сила ветрового воздействия на надводную часть судна F B зависит от скорости и направления ветра, формы надводной части корпуса, размеров и расположения надстроек. Расчетное значение усилия от ветра можно определить по формуле, Н

F B = К н р в S н

где К н = 0,5 ? 0,8 - коэффициент обтекания надводной части корпуса

р в = сV 2 / 2 - давление ветра, Па;

с = 1,29 - плотность воздуха, кг/м 3 ;

V - скорость ветра, м/с

р в =1,29*10 2 /2=64,5Па

Площадь проекции надводной части судна на миделевое сечение, м 2:

B - ширина судна, м;

H - высота борта, м;

T - осадка, м;

b, h - соответственно ширина и высота судовых надстроек, м.

S н =11,6*(3,5-2,5)+11*2,5+10,5*5 =91,6 м 2

F B =0,5*64,5*91,6=2954,1 Н

Сопротивление корпуса, обусловленное течением, учитывается только сопротивлением трения, так как все другие виды сопротивления (волновое, вихревое) практически отсутствуют вследствие малой скорости течения, Н

где К Т = 1,4 - коэффициент трения;

S см = L (д B + 1,7 T)

Площадь смачиваемой поверхности судна, м 2

Здесь д = 0,75 ? 0,85 - коэффициент полноты водоизмещения;

L, B, T - главные размерения судна, м;

S см =78*(0,8 4 *11,6+1,7*2,5)= 1055,34 м 2

V T - скорость течения воды, м/с.(1,38м/с)

F " T =1,4*1055,34*1,38 1,83 =2663,7 Н

где Z Г - число гребных винтов;

C Г = 200 ? 300 - параметр, увеличивающийся с возрастанием дискового отношения гребного винта, кг/м 3 ;

D В - наружный диаметр гребного винта (насадки), м.

F " Г =2*200*1,5 2 *1,38 2 = 1713 , 96 Н

F "=2954,1+2663,7+1713,96=7331,96 Н

Состояние якорной цепи при съеме судна с якоря

При подтягивании судна к месту заложения якоря изменяется состояние якорной цепи, что приводит к изменению нагрузки электропривода. Для облегчения анализа работы якорного механизма и оценки усилий на клюзе рассматриваемый процесс условно разделяют на четыре стадии.

I стадия - выбирание лежащей на грунте цепи.

С включением якорного механизма судно начинает разгонятся до постоянной скорости, равной скорости выбирания цепи, и подтягиваться к месту заложения якоря. Сила внешнего воздействия увеличивается за счёт увеличения относительной скорости течения и определяется уравнением, Н

F = F B + F T + F Г

Здесь для расчета силы сопротивления корпуса и силы воздействия потока на гребные винты, относительная скорость течения определяется арифметической суммой скорости течения V T и абсолютной скорости подтягивания V П. Скорость подтягивания судна находится в пределах 0,1 ? 0,3 м/с.

V ? =1,38+0,3=1,68м/с

Уравнения (1) и (2) примут вид

F T =1,4*1055,34*1,68 1,83 =3818 Н

F Г =2*200*1,5 2 *1,68 2 =2540,16 Н

F =2954,1+3818+2540,16= 9312,26 Н

Увеличивается длина провисающей части цепи и на клюзе устанавливается равновесие горизонтальных сил.

Держащая сила якоря возрастает и становится равной обобщенной силе внешних воздействий в новых условиях.

Т 0 = F=9312,26 Н

Отсюда, на основании уравнения определяется длина провисающей части цепи L 2 , м

где: b - высота клюза над водой, м.

m ц - линейная плотность цепи, кг/м: при отсутствии справочных данных может быть определена по эмпирической формуле m ц = 0,0215 d 2 , где d - калибр цепи, мм.

Длина цепи лежащей на грунте L 1 , м

L 1 = L - L 2

L 1 = 200-142,2=57,8 м

где L - длина вытравленной якорной цепи, обычно принимается при расчётах равной полной длине цепи правого якоря, м. L=2,5h

Длина выбираемой части цепи на этапе L I = L 1 .

При установившейся скорости движения судна тяговое усилие на цепной звездочке постоянно, Н

T з1 =1,3*0,87*9,81*13,4 * =24352,9 Н

где f кл = 1,28 ? 1,35 - коэффициент потерь на трение от клюза до цепной звёздочки.

II стадия - спрямление провисающей части цепи.

После поднятия последнего звена цепи, лежащего на грунте, якорная цепь укорачивается, натягивается.

L II = L 2 - h

L II = 142,2 -80= 62,2 м

Силы натяжения и углы их приложения постоянно меняются, усилия на клюзе и на цепной звездочке возрастают. Наступает момент, когда происходит отрыв якоря, означающий конец второй стадии. Значение отрывной силы зависит от характера сцепления якоря с грунтом и в конкретных случаях является трудноопределимым. Российский речной Регистр на основании статистических исследований позволяет считать силу подрыва якоря Холла равной его двойному весу. С учетом выше сказанного усилие на цепной звездочке в момент отрыва определится уравнением, Н

T з2 =1,3* = 32756 Н

где m я - масса якоря, кг.

III стадия - отрыв якоря от грунта.

Является наиболее напряженной стадией. Начинается после подрыва якоря от грунта. Электропривод работает со скоростью, соответствующей отрывной нагрузке. Происходит волочение якоря по грунту на встречу судну.

Учитывая известную неопределённость отрывного усилия, граница между II и III стадиями является условной. При неблагоприятных случаях заклинивания якоря в крупно каменистом грунте усилие на звездочке может значительно превысить отрывное расчетное значение. Электропривод постепенно затормаживается. Отрыв якоря происходит вследствие кинетической энергии судна, проходящего на некоторой скорости над местом заложения якоря. При расчете и построении зависимости Т з = f(L) считают, что усилие на звездочке при волочении якоря по грунту равно усилию Т з II , а длина цепи за время III стадии не изменяется.

IV стадия - подъем свободно висящего якоря.

Начинается с момента, когда оторванный от грунта якорь повисает на цепи. Тяговое усилие на цепной звездочке резко уменьшается, Н

T з3 =1,3*0,87*9,81*(570 + 13,4 *80)= 18218 Н

Происходит подъем якоря. Работа электропривода здесь не связана с движением судна. Тяговое усилие равномерно убывает по мере подъема якоря. При выходе якоря из воды четвертая стадия заканчивается.

Тяговое усилие на цепной звездочке, Н

T з4 =1,3*9,81* 570 = 7269,2 Н

Длина выбранной цепи на этапе, м

L IV = h =80 м

В дальнейшем якорь на малой скорости втягивается в клюз. Облегчённая и непродолжительная работа электропривода на этом участке при энергетических расчетах, как правило, не учитывается. Графическое изображение реальных усилий на цепной звездочке по мере выбирания якорной цепи затруднено из-за возникновения колебания цепи при пуске электродвигателя и приближении судна к якорю, неопределённых и случайных значениях момента при волочении и отрыве якоря от грунта.

В практике расчета якорного электропривода принято пользоваться упрощенной зависимостью усилий на звёздочке от длины якорной цепи. Для упрощенного графического построения принимают:

· усилие на первой стадии постоянно и равно усилию на цепной звёздочке при установившемся движении судна к якорю;

· усилие на второй стадии изменяется линейно и заканчивается усилием на цепной звездочке при отрыве якоря от грунта;

· длина цепи за время третьей стадии не изменяется, т.е. отрыв якоря происходит мгновенно и волочение якоря отсутствует;

· за расчётное значение длины якорной цепи принимается полная длина цепи правого якоря.

Упрощенная диаграмма усилия на звездочке якорного устройства при съемке судна с якоря.

Кроме рассмотренного режима снятия с якоря Правилами предусматривается осуществление электроприводом одновременного подъема двух якорей с половины глубины якорной стоянки.

Усиление на звездочке якорного устройства в начале режима

T 5 =1,3*087*9,81*(2* 570 + 13,4 *200)= 42383,3 Н

в конце режима

T 6 =2*1,3*9,81* 570 = 14538,4 Н

При расчетах электропривода в данном режиме работы глубину якорной стоянки принимают равной длине цепи правого якоря.

Диаграмма усилий на цепной звёздочке при одновременном поднятии двух якорей.

При построении графика зависимости усилий на цепной звездочке от длины вытравленной цепи необходимо помнить, что происходит одновременный подъем двух якорей, что длина цепи каждого из них при этом равна половине длины цепи правого якоря.

Нагрузочные диаграммы якорных электроприводов

Характеристики состояния якорной цепи в процессе съёмки судна с якоря являются основными промежуточными параметрами, позволяющими осуществить построение нагрузочных диаграмм электропривода. Обычно используются упрощенные графические диаграммы зависимостей усилий на цепной звездочке в функции длины якорной цепи (рис. 5.3, 5.4).

Момент на звездочке определяется произведением усилия на звездочке на её радиус

М зв1 = = 4140 Н*м

М зв2 = = 5568,52 Н*м

М зв3 = = 3097 Н*м

М зв4 = = 1235,7 Н*м

М зв5 = = 7205,1 Н*м

М зв6 = = 2471,5 Н*м

где Т з i - текущее значение усилия натяжения на звездочке, Н;

D з - диаметр цепной звездочки, м: диаметр пятикулачковой звездочки, чаще всего применяемой на якорных устройствах речных судов, может быть определён по формуле

D з = 13,7 d =13,7*0,02 5=0, 34 м

где d - калибр цепи, мм.

Момент на валу электродвигателя определяется известным из механики уравнением

M 1 = = 34,7 Н*м

M 2 = = 46,7 Н*м

M 3 = = 26 Н*м

M 4 = = 10,3 Н*м

M 5 = = 60,5 Н*м

M 6 = = 20,7 Н*м

где i - передаточное число редуктора;

з мех - механический коэффициент полезного действия передачи.

Для предварительной оценки передаточного числа задаются скоростью выбирания якорной цепи и частотой вращения электродвигателя.

i = = 142

где n" ном = 670 ? 1400 - ориентировочное значение номинальной частоты вращения электродвигателя, об/мин;

V - скорость выбирания якорной цепи, м/с: согласно требованиям российского Речного Регистра должна быть больше 0,12 м/с и при практических расчетах принимается в пределах (0,14 ? 0,17) м/с.

Полученное значение передаточного числа уточняют по справочнику.

i = 170

Механический коэффициент полезного действия якорно-швартовых механизмов обычно находится в пределах з мех = 0,7 ? 0,75.

Используя данные уравнения получают граничные значения моментов на валу двигателя в процессе съемки судна с якоря.

При построении нагрузочных диаграмм (для якорных механизмов это зависимость момента на валу исполнительного электродвигателя от длины якорной цепи) в масштабе по оси ординат откладывают рассчитанные значения моментов, по оси абсцисс длину выбираемой на каждой стадии якорной цепи.

Нагрузочная диаграмма якорного электропривода при съемке судна с якоря.

Нагрузочная диаграмма якорного электропривода при одновременном поднятии двух якорей.

Определение мощности электродвигателя

швартовой якорный электропривод судно

Предварительный расчёт мощности и выбор электрод

В практике определения мощности исполнительных электродвигателей якорных и якорно-швартовых механизмов расчётное значение номинального момента устанавливают по наибольшему моменту М 2 нагрузочной диаграммы.

При трогании двигателя оказываются повышенными статические коэффициенты трения отдельных пар механизма передачи. Кроме того, необходим некоторый запас на создание активного момента для разгона системы. По опыту завода "Динамо" общий необходимый избыток пускового момента оценивается в 50%: =1,5* 46,7 = 70 Н*м

Тогда, учитывая требования Российского речного Регистра, расчетное значение номинального момента может быть определено по выражению

где л м = 2 ? 2,5 - перегрузочная способность двигателя;

К u = 0,9 - коэффициент запаса на падение напряжения;

К м = 0,9 - коэффициент запаса на механический износ.

Расчетное значение мощности используемого электродвигателя, кВт

где n" ном - расчетное значение номинальной частоты вращения; принималось при определении передаточного числа редуктора.

Двигатель выбирается из каталогов специальных серий, выпускаемых промышленностью для якорно-швартовных механизмов, типа МАП и ДПМ, в зависимости от рода тока и величины номинального напряжения судовой сети. При этом должно выполнятся условие, где Р ном30 - номинальная мощность выбранного электродвигателя в тридцатиминутном режиме работы.

Номинальная частота вращения выбранного электродвигателя n ном должна быть примерно равна расчетному значению номинальной частоты вращения

Тип двигателя- МАП421-4/8

Мощность - 7 кВт

Режим работы - 30-ти минутный на основной частоте вращения

Частота вращения - 1400 об/мин

Напряжение - 380 В

Номинальный ток статора -18,3 А

Пусковой ток - 95 А

Максимальный момент - 145 Н*м cos 9 - 0.84

Опыт расчёта и построения механических характеристик этих двигателей показывает, что наиболее точный результат в области рабочих скольжений дает упрощенная формула Клосса.

где M к = M max = 145 - критический или максимальный момент двигателя, Н м;

0,06- номинальное скольжение;

1500- частота вращения поля статора, об/мин;

3- кратность максимального момента;

47,7 Н*м - номинальный момент, Н м;

Критическое скольжение.

n к = n 0 *(1- S k )=1500*(1-0,34)=990- частота вращения при критическом скольжении

Механическая характеристика асинхронного двигателя.

Проверка выбранного электрод вигателя для якорных механизмов

Проверка на нагрев

Проверка на нагрев электродвигателей якорного механизма проводится при работе привода в двух режимах: съемке с якоря при стоянке на расчетной глубине и подъеме одного якоря; одновременному подъему двух якорей с половины глубины якорной стоянки. Оба режима осуществляются при работе двигателей постоянного тока на естественной характеристике, асинхронных двигателей - на основных обмотках.

Съемка с якоря при стоянке на расчетной глубине.

По значениям моментов М 1 , М 2 , М 3 , М 4 определяются соответствующие значения частоты вращения n 1 , n 2 , n 3 , n 4 , и тока I 1 , I 2 , I 3 , I 4 .

n 1 = 87 0 об/мин

n 2 = 850 об/мин

n 3 = 900 об/мин

n 4 = 930 об/мин

к= = = 0,32 ;

I A 1 = M 1 *к= 34,7 * 0,32 = 11,1 А

I A 2 = M 2 *к= 46,7 *0,32= 14,9 А

I A 3 = M 3 *к=26*0,32=8,32А

I A 4 = M 4 *к=10,3*0,32= 3,2 А

I р = I н * sin ? =18,3* sin 33=9,

I 1 = = = 14, 8A

I 2 = = =17, 8 A

I 3 = = =12, 9 A

I 4 = = = 10,4 A

Рассчитывается время выбирания цепи на отдельных стадиях.

На первой стадии при постоянстве момента М 1 частота вращения n 1 постоянна и время работы, мин

t 1 = = 8,8 мин

На второй стадии момент возрастает линейно от значения М 1 до М 2 , а частота вращения уменьшается от n 1 до n 2 . Средняя частота вращения, об/мин

n 12 = =860 об/мин

Время работы электродвигателя на второй стадии, мин

t 2 = = 9,3 мин

Время отрыва якоря от грунта и характер изменения момента при этом определить достаточно трудно: практически двигатель может остановиться. Поэтому, при расчете на нагрев двигателей якорных и якорно-швартовных механизмов значения момента и тока на 3-ей стадии принимаются равными пусковым значениям, а время стадии - 0,5 мин. На четвёртой стадии момент меняется от значения М 3 до М 4 , частота вращения увеличивается от n 3 до n 4 .

Среднее значение частоты вращения, об/мин.

n 34 = 915 об/мин

время работы электродвигателя, мин

t 4 = =11 мин

Общее время работы электродвигателя при съемке с якоря, мин,

T = 8,8 + 9,3 +0,5+ 11 = 29,6 мин

Диаграмма I = f(t) при съеме судна с якоря.

Эквивалентный ток двигателя при работе по съемке судна с якоря, А

Для речных судов время съемки с якоря не превышает 15 - 20 минут. Согласно отраслевых требований электропривод должен обеспечить последовательно два подъема якоря с расчетной глубины якорной стоянки, при этом стоянка под током в течении 30 с учитывается только один раз. Эквивалентный ток двигателя при последовательной двукратной съемке с якоря, А

Мощность двигателя для якорных и якорно-швартовных механизмов выбирается по 30 минутному режиму работы, поэтому эквивалентный ток необходимо привести к 30 минутному режиму, если время работы при последовательной двукратной съемке с якоря будет больше или меньше 30 минут.

T экв =2*8,8+2*9,3+0,5+2*11= 58.7мин

I экв 30 =16,6* =18,1

Двигатель проходит проверку на нагрев при работе по съемке судна с якоря, если выполняется условие

Подъем двух якорей с половины расчетной глубины якорной стоянки.

По значения моментов М 5 и М 6 (рис 5.6) определяют соответствующие значения частоты вращения n 5 и n 6 и значения токов I 5 и I 6 .

N 5 =780 об/мин

n 6 =910 об/мин

I A 5 = M 5 *к=60,5*0,32=19.3А

I A 6 = M 6 *к=20,7*0,32=6,6А

I 5 = = =21,6 А

I 6 = = = 11,8 А

n 34 = 845 об/мин

время работы в режиме одновременного подъема двух якорей, мин.

t 56 = = 15,6 мин

Диаграмма I = f(t 5) при одновременном подъеме двух якорей.

Эквивалентный ток при одновременном подъеме двух якорей, А

Электродвигатель проходит проверку на нагрев, если выполняется условие

I ном30 =16,9* = 12,1 А

где I ном - номинальный ток электродвигателя в 30-минутном режиме работы, А

Схе ма управления электродвигателем

Выбираем схему кулачковых контроллеров с тиристорными коммутаторами для управления двухскоростного электродвигателя:

Работа схемы:

При переводе маховичка контроллера в рабочее положение (1,2 или 3) сначала замыкаются без тока реверсивные контакты Q3, Q4 или Q5, Q6 (на положении 1) и контакты Q9, Q10 или Q11, Q12 (на положении 2 или 3). Промежуточные положения П являются нефиксированными.

Включение электродвигателя тиристорными коммутаторами ТК происходит только после замыкания контактов S1 и S2. При переводе маховика контроллера в нулевое положение, наоборот, первыми размыкаются контакты S1 и S2, в результате чего тиристоры блока ТК закрываются. Контакты скорости Q9, Q10, а также реверсивные контакты контроллера размыкаются уже при отсутствии тока в цепи. Состояние тиристоров силового блока контролируется реле KV (блок K), контакты которого включены в управляющие цепи тиристорного коммутатора тормоза YB. Силовой тиристорный блок ТК, блок тормоза ТК, а также блоки контроля К и защиты от перенапряжения ЗП размещаются в отдельном шкафу контроллера.

Блок ЗП предназначен для защиты тиристоров силового блока и блока тормоза от кратковременных, но значительных перенапряжений, которые могут возникать в сети, питающий данный привод. Принцип действия защиты основан на том, что конденсатор, включенный на выходе выпрямительного моста, представляет малое сопротивление для импульсов переменного тока.

Выбор аппаратов управления.

Выбираем:1) тиристорный коммутатор сериии ТК-0,4-150:

Номинальное напряжение - 380в

Пусковой ток - 150А

2)Автоматический выключатель серии ВА 57-31

Номинальнай ток - 25А

3)Тепловое реле марки РТЛ-1022 18-25А

Литература

1. Шмаков М.Г. Климов А.С. Якорные и швартовные устройства. - Л.: Судостроение, 1964. - 415с.

2. Чиняев И.А. Судовые вспомогательные механизмы. - М.: Транспорт, 1989. - 294с.

3. Судовые электроустановки и их автоматизация. /К.Т. Витюк, П.И. Гриценко, П.К. Коробов, В.В. Тихонов/ 2-е изд. - М.: Транспорт, 1986. - 448 с.

4. Бабаев А.М. Ягодкин В.Я. Автоматизированные судовые приводы. - М.: Транспорт, 1986. - 448 с.

5. Головин Ю.К. Судовые электрические приводы. - М.: Транспорт, 1991. - 327 с.

6. Российский речной Регистр. Правила (в 3-х т.). Т.1.- М: Марин инжиниринг сервис, 1995. - 329 с.

7. Российский речной Регистр. Правила (в 3-х т.). Т.2.- М: Марин инжиниринг сервис, 1995. - 432 с.

8. Сыромятников И.А. Режимы работы асинхронных и синхронных электродвигателей. - М.: Госэнергоиздат, 1963. - 528 с.

9. Яуре А.Г. Покрасс И.И. Белый В.А. Электроприводы палубных механизмов. - Л.: Судостроение, 1967. - 314 с.

10. Чиликин М.Г. Сандлер А.С. Общий курс электропривода. - М.: Энергоиздат, 1981 - 576 с.

11. Судовые электроприводы. Справочник /А.П. Богословский, Е.М. Певзнер, И.Р. Фрейдзон, А.Г. Яуре/. Т1 - Л.: Судостроение, 1983. - 352с.

12. Судовые электроприводы. Справочник /А.П. Богословский, Е.М. Певзнер, И.Р. Фрейдзон, А.Г. Яуре/. Т2 - Л.: Судостроение 1983. - 384с.

13. Справочник судового электротехника /Китаенко Г.И./. (в 3-х т) т1 - Л.: Судостроение, 1980. - 528 с.

Подобные документы

    Определение массового водоизмещения проектируемого буксирного судна; его главных размеров, коэффициентов полноты водоизмещения, конструктивной ватерлинии и мидель-шпангоута. Уточнение величины осадки. Проверка выполнения требований Речного Регистра.

    контрольная работа , добавлен 15.09.2012

    Судна, в которых применяется продольная система набора. Оценка плавучести судна и особенности нормирования этого качества. Регламентирование грузовой марки. Назначение якорного устройства, его составные части и расположение. Движители быстроходных судов.

    контрольная работа , добавлен 17.05.2013

    Вероятность опрокидывания судна. Расчётная ситуация "Критерий погоды" в Требованиях Российского Морского Регистра судоходства. Определение опрокидывающего момента и вероятности выживания судна. Требования к посадке и остойчивости повреждённого судна.

    презентация , добавлен 16.04.2011

    Определение длины якорной цепи, необходимой для удержания судна на якоре и силы ее наибольшего натяжения у клюза; радиуса окружности, которую будет описывать корма; сил ветра и течения, действующих на сухогруз. Сумма действующих на судно внешних сил.

    лабораторная работа , добавлен 19.03.2015

    Подготовка судна к сдаточным испытаниям. Швартовные испытания, проверка качества постройки судна, монтажа и регулировки оборудования. Ходовые испытания и сдача судна. Ревизия главных и вспомогательных механизмов и устройств. Контрольный выход судна.

    реферат , добавлен 09.07.2009

    Расчет продолжительности рейса судна. Судовые запасы на рейс: топливо, смазочное масло, пресная вода и продовольствие для нужд экипажа. Размещение запасов. Таблица вместимости грузовых танков. Построение диаграмм статической и динамической остойчивости.

    курсовая работа , добавлен 31.10.2012

    Определение инерционных характеристик судна. Выбор его курса, скорости хода в штормовых условиях. Расчет ледопроходимости корабля при движении в ледовом канале. Построение диаграмм статической и динамической остойчивости. Определение веса палубного груза.

    курсовая работа , добавлен 05.01.2015

    Действия капитана при постановки судна на якорь. Подход к месту якорной стоянки и маневрирование при отдаче якоря при наличии ветра и течения. Маневрирование при развороте судна в узкости. Перетяжка судов вдоль причала. Перешвартовка к другому причалу.

    реферат , добавлен 02.10.2008

    Общие характеристики судна-прототипа, его вспомогательных механизмов, систем и устройств. Выбор рулевой машины, якорно-швартовного, спасательного, буксирного устройства. Оборудование и механизмы общесудовых и специальных систем. Расчет якорного брашпиля.

    курсовая работа , добавлен 19.04.2013

    Схема плавания судна при отрицательных температурах. Оценка опасностей и возможных аварийных случаев на предмет частоты возникновения и серьёзности последствий. Ответные меры, направленные на их устранение. Определение степени риска морских операций.

Общие сведения. Якорное устройство судна — это совокупность приспособлений и механизмов, служащих для удержания судна на якоре, его подъёма, отдачи и хранения. Якорное устройство включает: якоря; якорные цепи; якорные и палубные клюзы; винтовые стопора, закрепляющие якорь и цепь; подъёмный механизм — якорная лебёдка (брашпиль, или шпиль с тормозами и счётчиками длины вытравленной цепи); цепной ящик с устройствами крепления и отдачи якорных цепей (жвако-галс и глаголь-гак).

Швартовное устройство судна — совокупность приспособлений и механизмов для удержания судна во время стоянки судна у причала или у борта другого судна. Швартовное устройство включает швартовы, кнехты, утки, киповые планки, швартовные клюзы, вьюшки, швартовные лебёдки или шпили.

Основными типами якорно-швартовных механизмов являются якорно-швартовный брашпиль или якорно-швартовные шпили.


Схемы брашпиля и шпиля приведены на рисунках:

Техническое обслуживание брашпиля и шпиля включает:

Наружный осмотр брашпиля и шпиля;

Проверка уровня масла в редукторах;

Проворачивание брашпиля и шпиля в течение 1-2 минут на полной скорости вращения с целью предупреждения контактных повреждений в зубчатых передачах и шарикоподшипниках;

Шприцевание стопоров якорных цепей, приводов тормозных и разобщительных устройств якорных цепей. Особенно тщательно необходимо смазать внутренние втулки цепных звёздочек через установленные на их верхних буртах колпачковые маслёнки;

Слив отстоя масла из редукторов и пополнение его до рабочего уровня (при наличии в отстое металлических включений вскрыть редуктор соответствующего механизма, найти и устранить причину повышенного износа деталей);

Проверка состояния резьбовых соединений;

Замена масла в редукторах брашпиля и шпиля через каждые два года.

Дефектоскопия и ремонт якорного устройства.

Определяющими дефектами якорного устройства являются: механическое и коррозионное изнашивание якорей, цепей, цепного ящика, жвака-галса, глаголь-гака, бортовых клюзов, стопоров. Дефекты якорного устройства определяют внешним осмотром и измерением.

Якорь заменяют, если его первоначальная масса из-за коррозии и изнашивания уменьшится более чем на 20%. При ремонте якорей допускается по согласованию с Российским морским Регистром судоходства применение сварки при устранении трещин в сварных швах (сварных конструкциях). Отремонтированные якоря испытывают бросанием на стальную плиту толщиной 100 мм с высоты от 3,5 до 4,5 м в зависимости от массы якоря. После испытаний якорь подвешивают, обстукивают и по звуку определяют наличие трещин.

Звенья цепей и другие элементы цепей с трещинами и износами свыше 10% калибра цепи заменяют на новые. Отремонтированные цепи испытывают по смычкам пробной нагрузкой на цепопробных станах. Величина нагрузки зависит от калибра и категории цепи (по ГОСТ 228-79).

Цепной ящик, палубные клюзы следует периодически очищать от грязи и ржавчины и окрашивать.

Специальное устройство для быстрой отдачи коренного конца якорной цепи должно быть хорошо расхожено и смазано в трущихся частях.

Изношенные и повреждённые детали якорных цепей (жвака-галс, глаголь-гак, вертлюга, скобы) либо восстанавливают электросваркой, либо заменяют.

Дефектоскопия и ремонт швартовного устройства.

К характерным дефектам швартовного устройства относят: изнашивание швартовных клюзов, кнехтов, киповых планок и направляющих роульсов, а также трещины и поломки. Стальные кнехты, киповые планки и клюзы ремонтируют электросваркой, а чугунные — заменяют.

Стальные тросы заменяют, если число лопнувших проволок составляет более 10% их количества в тросе на длине равной восьми его диаметрам.

Дефектоскопия и ремонт брашпиля и шпиля.

Фундаментная рама брашпиля и стальные литые стойки практически не изнашиваются при хорошем уходе за ними. У стоек фундаментной рамы возможно изнашивание поверхностей, на которых установлены постели подшипников. На этих опорных поверхностях, из-за ослабления посадки подшипников в своих постелях, образуются наклёп и вмятины. Эти дефекты устраняют способом калибровки постелей подшипников. Если вмятины и наклеп невелики, то ограничиваются ручной калибровкой. Снимают грузовые валы, стойки прочно крепят к раме. Изготавливают фальшвал, подобный грузовому валу, и укладывают его в подшипники. Покрытые краской шейки фалышвала оставляют следы на поверхности подшипников. Эти неровности шабрят одновременно на всех подшипниках. Операцию повторяют до тех пор, пока фальшвал не ляжет в подшипники. Такая укладка фальшвала гарантирует правильную геометрическую форму и соосность постелей на всех стойках. В случае больших деформаций раму с прочно скреплёнными стойками устанавливают на плите расточного станка и поверхности протачивают с одной установки, после чего постели подшипников калибруют с помощью фальшвала. Трудоёмкость ручных работ в этом случае значительно сокращается.

Подшипники, имеющие изнашивание на внутренней поверхности, в случае, если валы ремонтируют наплавкой шеек, можно расточить (если это позволяет толщина стенки вкладыша), а вал наплавить и проточить с учётом диаметра расточенного подшипника. Если же вал в хорошем состоянии, заменяют вкладыши подшипников на новые. Подшипники, ослабленные в постели, подлежат замене.

В судовом машиностроении всё больше внедряют подшипники качения вместо подшипников скольжения, что упрощает ремонт, который состоит в их замене.

Ремонт вала, имеющего изнашивание шеек и изгиб, выполняют в следующей последовательности. Вал устанавливают на станок в центрах, проворачивают и с помощью индикатора и линейки определяют величину изгиба. Если изгиб настолько велик, что вал установить в центрах невозможно, его укладывают на призмы плиты, нагревают в районе изгиба и гидравлическим прессом устраняют изгиб. Затем, проворачивая вал в центрах на станке, следят за результатами правки. Вал с устранённым изгибом Считают выправленным, если биение не превышает 1 мм. После правки на станке протачивают изношенные рабочие шейки на 10-12 мм под дуговую наплавку, желательно автоматическую, которую производят в три слоя. После неё вал подвергают термической обработке, режим которой устанавливают, уточнив химический состав стали. Затем вал снова устанавливают на станок и проверяют биение, если он деформировался, вал снова правят и приступают к токарной обработке и фрезерованию шпоночных пазов.

При дефектоскопии следует знать предельно допустимые износы: для шеек грузового вала овальность равна 0,25 мм, конусообразность — 0,15 мм; для шеек промежуточного вала — овальность 0,30 мм, конусообразность — 0,15 мм; для вала редуктора — овальность и конусообразность составляет 0,06-0,8 мм.

Задиры, риски и забоины, обнаруженные на валах шестерён, шлифуют на токарном станке, или вручную с помощью наждачного полотна, смоченного в масле, а затем окончательно обрабатывают пастой ГОИ.

Зубчатые колёса и шестерни, имеющие значительные повреждения (трещины, большое изнашивание зубьев), заменяют на новые.

Дефекты кулачковых и зубчатых муфт: смятия, задиры, изнашивание рабочих поверхностей кулачков, звёздочек и зубьев, ослабление посадки полумуфт на валах, поломка кулачков и зубьев и т.п. Задиры и смятие кулачков и зубьев исправляют опиловкой и шабрением. При значительном изнашивании кулачков восстановление их толщины производят электронаплавкой с последующей обработкой на строгальном станке. Затем рабочие поверхности кулачков пригоняют на краску по кулачкам полумуфт с точностью два-три пятна на 1 см2. Боковой зазор между кулачками у отремонтированных муфт с нерабочей стороны должен быть в пределах 1,5-2 мм.

Ослабление посадки полумуфт на валах устраняют электронаплавкой с последующей расточкой под посадочный размер. Звёздочки и полумуфты со значительным изнашиванием, трещинами, поломанными кулачками и зубьями заменяют новыми. Монтируя муфты, необходимо выдержать параллельность плоскостей соединения полумуфт и их перпендикулярность осям валов с точностью 0,02 мм на 1 м длины.

У упругих втулочно-пальцевых муфт возможно изнашивание упругих колец, погнутость пальцев, выработка отверстий под пальцы. Изнашивание упругих колец и выработка отверстий под пальцы допускаются до 2 мм на диаметр.

Зазор между упругим элементом и отверстием не должен превышать 1-2 мм. При замене упругих колец они должны быть посажены на пальцы плотно, без зазора.

Погнутые пальцы заменяют. Разработанные отверстия под пальцы развёртывают на больший диаметр, или отверстия заваривают электросваркой с последующим сверлением новых. Для увеличения срока службы пальцев эластичных муфт можно их периодически поворачивать.

0

Для надежной стоянки на якоре, у причалов и других плавучих и береговых сооружений суда оборудуют якорными и швартовными механизмами. Обычно операции по подтягиванию швартовного каната, отдаче якоря, отрыву от грунта, подъему и уборке якоря в клюз выполняют на судах одним механизмом, снабженным звездочкой для якорной цепи и швартовным барабаном для швартовов (стальных, пеньковых, капроновых и других канатов).

Якорно-швартовные механизмы, выполняющие такие операции, подразделяют на шпили и брашпили. Первые имеют вертикальную ось вращения тяговых органов, вторые - горизонтальную. У шпиля - одна звездочка и один швартовный барабан (если шпиль звездочки не имеет, его называют швартовным). У брашпиля обычно две звездочки и два швартовных барабана. Шпили и брашпили, входящие в состав якорных и швартовных устройств, подразделяют на малые (с цепями калибров до 28 мм и тяговым усилием до 15 кН), средние (с цепями калибров 29-46 мм и тяговым усилием 16-50 кН) и крупные (с цепями калибров более 46 мм и тяговым усилием более 50 кН).

По роду используемой энергии якорно-швартовные механизмы могут быть ручными, электрическими и гидравлическими. Ручные шпили и брашпили применяют в основном на несамоходных судах с якорями массой до 400 кг и калибром якорных цепей до 19 мм. Наиболее распространенным приводом якорно-швартовных механизмов является электрический, небольшая часть судов эксплуатируется с паровыми шпилями и брашпилями, в последнее время внедряется и гидравлический привод.

На вал электродвигателей якорношвартовных механизмов устанавливают тормоз, предназначенный для удерживания тяговых органов от вращения под нагрузкой, превышающей на 50% номинальную. Мощность шпилей (брашпилей) по правилам Речного Регистра РСФСР должна быть достаточной для подтягивания судна к якорю, отрыва и подъема якоря со скоростью не менее 0,12 м/с при номинальном тяговом усилии на звездочке. Шпили должны выбирать канаты при номинальном тяговом усилии с установленной скоростью (не более 0,3 м/с) и при необходимости создавать двухкратное усилие на швартовном барабане в течение 15 с.

Устройство шпилей

Большинство судов имеют два становых якоря в носовой части и стоп-анкер (меньший по массе якорь) в кормовой части. Поэтому в носовой части судна устанавливают, как правило, брашпиль с двумя звездочками и швартовными барабанами, а в кормовой части - якорно-швартовный шпиль. Исключение составляют суда катамаранного типа, у которых в носовой части каждого корпуса смонтированы шпили. На буксирах-толкачах для выполнения якорно-швартовных операций иногда используют буксирные лебедки. На судах небольшой мощности устанавливают, как правило, один носовой якорношвартовный шпиль.

Механизм шпиля обычно имеет две части: верхнюю, состоящую из швартовного барабана 1 (рис. 132, а) со звездочкой, и нижнюю, включающую электродвигатель 3 и редуктор 2. По расположению привода шпили могут быть двухпалубные (рис. 132,а) и однопалубные (рис. 132,6, в). У двухпалубных шпилей электродвигатель с редуктором смонтированы на нижней палубе, а швартовный барабан - на верхней. Электрические однопалубные шпили могут иметь надпалубное

(см. рис. 132,6) или подпалубное (см. рис. 132,в) расположение электродвигателя. При подпалубном расположении электродвигателя 2 обслуживают привод через вырез в палубе или люки фундамента шпиля, снабженные водонепроницаемыми крышками.





Рис. 132. Схемы расположения шпилей

На современных судах чаще всего устанавливают однопалубные шпили с надпалубным расположением электродвигателя 2 и редуктора 3.

В настоящее время в качестве ручных широкое применение получили судовые шпили с рукояточным приводом семи типоразмеров ШР1 - ШР7 с номинальными тяговыми усилиями на турачке (барабане) до 7 кН и на звездочке до 6,5 кН: ШР1 и ШР2 - швартовные с барабаном без звездочки; ШРЗ - ШР5 - якорно-швартовные с барабаном и звездочкой, отлитым за одно целое; ШР6 - ШР7 - якорношвартовные, оборудованные колодочным тормозом и раздельно отлитыми барабаном и якорной звездочкой.

Швартовный барабан 7 (рис. 133), отлитый заодно со звездочкой 9, у ручных шпилей вращается на втулках 5 и 8 вокруг оси-баллера 6, жестко закрепленного в фундаментной раме 11. В головке (верхней части) шпиля на двух опорах смонтирован горизонтальный вал 1, проходящий через отверстие в баллере. На концах горизонтального вала закреплены конические шестерни 2 и съемная рукоятка 4. Вращение горизонтального вала передается ведомой шестерне 5, соединенной с верхней торцовой поверхностью швартовного барабана 7. К нижней части звездочки на пальцах шарнирно прикреплены собачки 10, перемещающиеся при вращении барабана по соответствующим храповым выступам, сделанным в фундаментной раме 11. Как только вращение рукоятки прекращается, собачки упираются в выступы на раме и стопорят барабан от обратного вращения.


Рис. 133. Ручной якорно-швартовный шпиль ШР4

При изменении направления вращения рукояток собачки перебрасываются в другую сторону.

Электрические якорно-швартовные шпили изготавливают с запасным ручным приводом, если они предназначены для работы с якорными цепями калибром до 28 мм (в морских условиях) и до 34 мм (в речных условиях). В последнее время в связи с возрастанием мощности энергетических установок судов устанавливают якорношвартовные шпили, как правило, без запасного привода.

Схема одного из таких электрических шпилей показана на рис. 134. Турачка (швартовный барабан) 5 и якорная звездочка 2 шпиля посажены свободно на неподвижную втулку 9, внутри которой от электродвигателя через редуктор 11 (червячную, червячно-цилиндрическую или червячно-планетарную передачу) может вращаться пустотелый вал (баллер) 4. Соединены они кулачковой муфтой 3 с помощью маховика 7, при вращении винта 6 которого можно поднимать и опускать турачку. Якорная звездочка имеет шкив 10 для ленточного тормоза.


Рис. 134. Электрический шпиль

Скоба 1 выполняет роль отбойника якорной цепи.

При включении электродвигателя через редуктор 11 получает вращение пустотелый баллер 4, соединенный зубчатой муфтой 8 с турачкой 5. Для выполнения швартовных операций вращением маховика 7 поднимают турачку и выводят ее из сцепления с кулачковой муфтой 3 звездочки 2. Последняя при этом стопорится от вращения ленточным тормозом. Якорные операции производят при работающем электродвигателе и выключенном тормозе, когда турачка опущена с помощью маховика 7 вниз до сцепления с кулачковой муфтой 3.

Устройство брашпилей

За последние годы конструкции брашпилей претерпели значительные изменения. В связи с увеличением мощности энергетических установок судов электрические брашпили изготовляют, как правило, без запасного ручного привода. Брашпиль, схема которого показана на рис. 135,а, состоит из следующих элементов: кулачкового контроллера для пуска и остановки электродвигателя; редуктора, передающего вращение якорным звездочкам и турачкам; рычагов и маховиков управления соответствующими муфтами и ленточными тормозными устройствами.


Рис. 135. Электрический брашпиль

При включении электропривода брашпиля через редуктор (рис. 135,6), состоящий из червячной 17, 16 и цилиндрической 18, 11 силовых передач, получает вращение грузовой вал 7. На его концах жестко закреплены швартовные турачки 6 и 15. Цепные звездочки 9 и 13, отлитые заодно со шкивами ленточных тормозов 8 и 14, посажены на валу свободно. Ступицы звездочек имеют кулачки, входящие в зацепление с муфтами 10 и 12, посаженными на шлицы грузового вала.

Швартовные операции производят при застопоренных тормозах и выключенных муфтах. Якоря поднимаются при включенной муфте 10 или 12 и выключенном ленточном тормозе на шкиве соответствующей звездочки. Одновременно разрешается поднимать два якоря только после поочередного отрыва их от грунта. В клюз 3 якоря втягиваются отдельно. Для отдачи якоря выключают ленточные тормоза и муфты. Звездочки под действием масс якоря и цепи при этом свободно вращаются на грузовом валу. Скорость якорной цепи регулируют ослаблением или натяжением тормозной ленты. Якорная цепь, сходящая со звездочки, хранится под палубой в цепном ящике 4, к которому она прикреплена жвака-галсом 5. Между брашпилем 1 и якорным клюзом 3, в котором подвешивают якорь, установлен стопор 2, предназначенный для крепления якорной цепи при выполнении швартовных операций, ремонтных работ и т. д.

Средства автоматизации якорных устройств. В соответствии с требованиями Речного Регистра РСФСР грузовые суда (длиной более 60 м) и толкачи оборудуют устройствами для отдачи якорей с поста управления судном, для подъема якорей - с местного поста. На речных судах широкое применение получили электромеханические и электрогидравлические средства дистанционного управления якорными механизмами. Электромеханические ДУ имеют два электродвигателя, один из которых предназначен для стопора якорной цепи, другой - для ленточного тормоза звездочки. Электрическая схема ДУ включается в работу переключателем режимов при установке его в положение «Торможение и дистанционная отдача». При нажатии кнопки управления пускается электродвигатель ленточного тормоза- лента начинает растормаживаться. Одновременно вступает в действие и электродвигатель отдачи стопора. К моменту отдачи стопора якорной цепи завершается и растормаживание ленты. Якорная цепь освобождается и происходит отдача якоря. При отпускании кнопки управления электродвигатель ленточного тормоза включается для затягивания ленты и отдача якоря прекращается. По мере натяжения ленты возрастает сопротивление на грузовом валу брашпиля, срабатывает муфта предельного момента, подача питания в схему прекращается и электродвигатель ленточного тормоза останавливается.


Рис. 136. Схема дистанционного управлений брашпилем


Рис. 137. Указатель длины вытравленной цепи

С помощью электрогидравлического ДУ, например брашпиля БЗР, осуществляется дистанционная отдача со свободным травлением и последующей остановкой травления якорной цепи на любом участке, местный контроль длины обеих якорных цепей, вытравленных за борт, и дистанционный контроль длины правой якорной цепи.

Схема ДУ брашпилем показана на рис. 136. При нажатии кнопки «Пуск» на пульте дистанционной отдачи якоря пускается электроприводной лопастной насос 14, и масло давлением 3,5 МПа через обратный клапан 9 поступает в верхнюю полость гидроцилиндра 5. Золотник 11, смещаясь вниз, перекрывает сливной канал, сообщающий нагнетательную магистраль 8 с масляным баком 12. Давление в верхней полости гидроцилиндра возрастает, поршень преодолевает сопротивление пружины 6 и перемещает толкатель 7. Рычаг 10 поворачивается по часовой стрелке и через тягу 2 растормаживает ленточный тормоз 1. Травление якорной цепи происходит до тех пор, пока нажата кнопка «Пуск». При этом избыток масла из нагнетательной магистрали сбрасывается в масляный бак через перепускной клапан 13. С отпусканием кнопки «Пуск» насос останавливается и давление в магистрали 8 падает. Золотник 11, смещаясь вверх, открывает сливной канал, сообщающий верхнюю полость гидроцилиндра 5 с масляным баком 12. Толкатель 7 под действием пружины поворачивает рычаг 10 против часовой стрелки и затягивает ленточный тормоз 1. Отдача якоря прекращается. Отдать ленточный тормоз 1 можно вручную вращением маховика 3 с винтом 4.

Момент отжатия кнопки «Пуск» контролируют визуально по механическому указателю длины вытравленной цепи, смонтированному на пульте дистанционной отдачи якоря. Механические указатели, выполненные в виде отдельных узлов, устанавливают в крышке редуктора брашпиля. При отдаче якоря цепь вращает звездочку 5, (рис. 137). Последняя через прямозубые и червячную передачи 2, 1 и 4 поворачивает на соответствующий угол лимб (диск) 3 относительно неподвижной стрелки. На лимбе закреплена шкала, градуированная в метрах соответственно передаточному отношению и расчетному диаметру звездочки. С заходом якоря в клюз звездочка, вращаясь в обратную сторону, устанавливает лимб со шкалой в нулевое положение. Указатель правой звездочки дополнительно оборудован электрическим преобразователем для дистанционного дублирования показаний указателя длины.

Автоматические швартовные лебедки


Рис, 138. Автоматическая швартовная лебедка

В последнее время некоторые суда оборудуют автоматическими швартовными лебедками. Швартовку судов с помощью таких лебедок производят в режиме ручного управления, а на стоянке они удерживают суда на швартовах с постоянным натяжением каната. При снижении усилия (ослаблении каната) лебедка автоматически выбирает канат (наматывает его на барабан), а с увеличением натяжения швартовов сверх заданного усилия - травит канат (поворачивает барабан для удлинения швартова). Автоматические швартовные лебедки изготовляют с электрическими или гидравлическими приводами. Устанавливают лебедки на палубе в удобном для производства швартовных операций месте. Пост управления может быть расположен и на некотором расстоянии от лебедок.

Автоматическую швартовную лебедку с электрическим приводом (рис. 138) обычно оборудуют двухскоростным редуктором, который при пуске электродвигателя приводит во вращение шестерню 1 (рис. 138,а) и пустотелый вал 6 с шестерней 7 и шестерней планетарной передачи. Последняя, вращаясь в неподвижном корпусе 4, через шестерни-сателлиты 3 и корончатую шестерню 8 вращает грузовой вал 5. На грузовом валу лебедки смонтированы швартовные барабаны 2 и 10, причем первый жестко скреплен с грузовым валом, а второй соединен с ним с помощью кулачковой муфты 9. При включении муфты 9 электродвигатель через редуктор, шестерню 7 и корончатую шестерню 8 передает вращающий момент на барабан 10 лебедки. Усилие на швартовном канате через шестерни 8 и 3 воспринимается корпусом 4 планетарной передачи, который удерживается от проворачивания пружиной 11 (см. рис. 138,6) переключателя режимов.

Каждому усилию Р на швартовном канате лебедки соответствует определенное положение поршня 13 в цилиндре 12, т. е. натяжение пружины 11. При ослаблении или натяжении швартовного каната равновесие нарушается. Например, с уменьшением усилия Р (ослаблением каната) пружина 11, воздействуя на поршень 13, поворачивает рычаг 14, связанный с командоконтроллером, вправо и электродвигатель включается в режим выбирания каната. При увеличении натяжения каната (возрастанием усилия Р) пружина 11 сжимается, рычаг 14 поворачивается влево и электродвигатель включается в режим травления каната. Когда усилие в швартовном канате и натяжение пружины переключателя режимов работы лебедки достигнут заданного значения, рычаг 14 разомкнет цепь управления электродвигателя. Вращающий момент на швартовном барабане в этом случае будет уравновешен моментом сопротивления на корпусе планетарной передачи лрбедки.

Гидравлические швартовные лебедки компонуют с приводным аксиально или радиально-поршневым насосом и реверсивным гидродвигателем. Смонтированный на валу лебедки гидродвигатель по конструкции аналогичен насосу. Разница заключается в том, что при вращении вала насоса в разные стороны в трубопроводах системы изменяется направление движения жидкости, а гидродвигатель, наоборот, с изменением направления жидкости в магистрали изменяет направление вращения барабана лебедки. Автоматический переключатель режимов в гидравлических лебедках управляет перепускным клапаном. С увеличением натяжения каната клапан перепускает все масло во всасывающий трубопровод и гидродвигатель работает в режиме насоса. При ослаблении натяжения каната, наоборот, перепускной клапан закрывается, давление в нагнетательной полости гидродвигателя возрастает и швартовный барабан поворачивается в направлении подтягивания каната.

Правила обслуживания

В соответствии с Правилами технической эксплуатации якорно-швартовные механизмы должны: «страгиваться» из любого положения; обеспечивать плавное торможение якорных звездочек; не допускать самопроизвольной отдачи якоря и травление швартовов; развивать в течение 15 с усилие в якорной цепи (швартовном канате) на 50% больше номинального.

Эксплуатация якорно-швартовных механизмов имеет такие особенности: кратковременность и периодичность действия, применение цепей и канатов. Поэтому от судового экипажа требуется строгое соблюдение последовательности выполнения всех производственных операций и правил безопасности при пуске якорно-швартов

ных механизмов, их обслуживании во время действия и остановки, а также при различных ремонтных работах.

При подготовке механизмов к пуску необходимо: выполнить их наружный осмотр; убедиться в отсутствии посторонних предметов на движущихся частях и в надежности крепления сопряженных деталей; установить наличие масла в баке насосного агрегата дистанционного привода отдачи якоря, в корпусе редуктора, подшипниках и других трущихся деталях; проверить опробованием исправность действия приводов ленточных тормозов и кулачковых муфт.

Все якорно-швартовные операции выполняют только по команде вахтенного начальника и под его руководством.

Запрещается эксплуатация механизмов при уменьшении диаметра отдельных звеньев цепи на 20% (на судах класса «М - СП» - на 10%). Число разорванных проволок у стальных швартовных канатов не должно превышать 20% общего их количества на длине, равной шести диаметрам.

Перед выполнением якорно-швартовных операций следует опробовать механизмы вхолостую и, только установив их исправность, приступать к работе. Маховик контроллера переставляют в положение «Пуск» только после переключения соответствующих органов управления (муфт, тормозов, палубных стопоров) в рабочее положение.

Во время работы механизмов следует периодически проверять температуру подшипников редуктора и корпуса электродвигателя, следить за наличием смазочного масла на трущихся поверхностях деталей, принимать все меры к тому, чтобы при движении деталей якорно-швартовных механизмов не наблюдалось стука и ненормального шума.

При выполнении якорно-швартовных операций запрещается: разъединять муфты включения звездочек, когда вращение баллера или грузового вала еще не прекратилось; дотрагиваться руками до расторможенной якорной цепи или поправлять якорь при втягивании его в клюз; открывать крышки контроллера, находящегося под напряжением; прикасаться к движущимся частям и стоять на линии движения якорной цепи или швартовного каната.

Для обеспечения исправного технического состояния механизмов, периодически (один-два раза в навигацию) производят их плановые ТО, во время которых проверяют крепление редуктора, электродвигателя, стоек и других деталей к фундаменту, вскрывают крышки смотровых окон редукторов и определяют состояние червячной и цилиндрической зубчатой пары, очищают трущиеся поверхности от загрязнения, песка и металлических опилок, устраняют все обнаруженные неисправности.

При плановых технических осмотрах разрешается разбирать механизмы только в объеме, необходимом для выполнения операций ТО.

Используемая литература: "Судовые энергетические установки" В.А. Сизых

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Часто якорные механизмы позволяют выполнять и швартовные операции. Образцом такого механизма может служить паровой брашпиль, кинематическая схема которого показана на рис. 7. Брашпиль одновременно обслуживает два якоря (правого и левого бортов), для этого на валу 15 имеется два цепных кулачковых барабана-звездочки 12, осуществляющих выбирание и отдачу якорной цепи. Ось барабанов брашпиля расположена горизонтально, к каждому цепному барабану 12 с одной стороны присоединен ленточный тормоз 10. Кулачковые муфты 13 соединяются шестерней 14. Отключив при помощи муфты один из цепных барабанов, можно производить выбирание якорной цепи на другом барабане. Паровая машина 11 через коленчатый вал 8, промежуточный вал 3 и цилиндрические зубчатые колеса 2, 4, 6, 7, 14 и 16 вращает цепные барабаны. На концах промежуточного вала установлены швартовные барабаны (турачки) 1 и 9, предназначенные для швартовки судна.

Рис. 7. Кинематическая схема парового якорно-швартовного брашпиля.

Брашпиль снабжен также устройством, позволяющим производить подъем цепей вручную. В этом случае паровая машина отключается от механизма передачи вращения при помощи кулачковой муфты 5. Таким образом, с помощью брашпиля можно подтягивать судно на швартовах с правого и левого бортов (при отключенных кулачковых муфтах 13), подъем и отдачу якорей обоих бортов поочередно или одновременно с помощью паровой машины или вручную.

Электрические брашпили, как правило, изготовляют также якорно-швартовными, и они находят широкое применение на морских транспортных и пассажирских судах (особенно теплоходах). Для брашпилей с большим тяговым усилием предусматривают два электродвигателя, работающих совместно или раздельно, для остальных - один электродвигатель. Преимуществами электрических брашпилей перед паровыми являются быстрота ввода в действие и более простое обслуживание.

Электрические шпили в зависимости от калибра якорных цепей бывают якорными и якорно-швартовными. По конструкции электрические шпили могут быть одно- и двухпалубными.

У однопалубных шпилей швартовный барабан со звездочкой для цепи и электроприводом размещается на одной фундаментной раме, закрепленной на верхней палубе. Электродвигатель в этом случае может быть расположен как на палубе, так и под ней. У двухпалубных шпилей электропривод находится на нижерасположенной палубе и соединяется со швартовным барабаном и звездочкой для цепи с помощью вертикального приводного вала.

На рис. 8 показана конструкция электрического однопалубного якорно-швартовного шпиля. Он состоит из швартовного барабана 7, свободно сидящего на баллере 1, червячной передачи 8, электродвигателя 13, ручного ленточного тормоза 2 с приводом 11 и рамы 12, закрепленной на палубе. При работе шпиля передача от электродвигателя к швартовному барабану осуществляется через эластичную муфту 10, баллер 1 и кулачковую муфту 3, соединяющую баллер шпиля с барабаном и управляемую маховиком 5. Ручная работа шпиля осуществляется посредством вымбовок 6, вставляемых в гнезда 4, при отключенной кулачковой муфте. Обратное вращение барабана при ручной работе предотвращает храповое устройство 9.


Рис. 8. Электрический однопалубный якорно-квартовный шпиль.

При решении вопроса о наиболее целесообразном типе якорного механизма для какого-либо судна учитывают многие факторы: назначение и тип судна, водоизмещение и характеристику его снабжения якорными цепями по Регистру СССР, характер обводов носовой оконечности, эксплуатационные условия и сравнительную затрату сил и времени экипажа на обслуживание якорного механизма того или иного вида, предполагаемый район эксплуатации судна. При прочих равных условиях предпочтение шпилям обычно отдают при острых носовых обводах и малой площади палубы бака, а также на судах, предназначенных для эксплуатации в полярных широтах.

В последнее время в связи с применением кнехтов с вращающимися тумбами расширяется возможность установки якорно-швартовных шпилей на небольших и средних судах, так как в этом случае можно получить дешевое и безопасное швартовное устройство за счет использования турачек шпилей. Турачка на таком шпиле располагается соосно над звездочкой для якорной цепи.

Значительный опыт постройки и эксплуатации шпилей и разнообразие конструкций обусловили необходимость их унификации и типизации. Новый типизированный ряд шпилей насчитывает 13 моделей шпилей, разбитых на две группы на основе требований Регистра СССР и ГОСТ 5875-77. Шпили моделей с 7-й по 13-ю выполняют двухпалубными, и их можно эксплуатировать без выхода людей на верхнюю палубу. Тяговое усилие на звездочке у шпилей широко распространенных моделей с 4-й по 8-ю первой группы составляет 4400-12 300 кгс (44- 123 кН), а на турачке - 2000-8000 кгс (20-80 кН); у шпилей тех же моделей второй группы тяговое усилие на звездочке 4050-12 900 кгс (40-129 кН), а на турачке - 3000-10 000 кгс (30-100 кН).

Швартовные лебедки предназначены для выполнения швартовных операций; в большинстве случаев валы их располагаются горизонтально.

По назначению и конструктивному исполнению швартовные лебедки подразделяются на простые и автоматические. Простые лебедки обеспечивают только подтягивание судна во время его швартовки; в дальнейшем судно удерживается на тросах, закрепленных на кнехтах.

Автоматические лебедки предназначены для подтягивания судна и для удержания с постоянным натяжением швартовного троса. Выбирание слабины троса и вытравливание его производится автоматически. Такие лебедки приводятся в действие паровым, электрическим, гидравлическим и пневматическим приводами.

Комбинированная швартовная лебедка показана на рис. 9. Она может быть использована для работы с якорем и для проведения швартовных и грузовых операций и приводится в действие электродвигателем 6.


Рис. 9. Комбинированная швартовная лебедка.

Электродвигатель, оборудованный электрическим дисковым тормозом 5, передает вращение грузовому валу через двухступенчатый зубчатый редуктор 7. Зубчатое колесо редуктора, грузовой барабан 3 и швартовная турачка 1 закреплены на валу жестко. Грузовой вал соединен с промежуточным валом 14 фланцевой муфтой 8. Цепная звездочка 10 перемещается свободно на промежуточном валу, а швартовная турачка 16 закреплена жестко. Ввод цепной звездочки в действие производится включением в зацепление кулачковой муфты 9. Шкив ленточного тормоза 12 оборудован ленточным тормозом 11. Грузовой и промежуточный валы располагаются на стойках 2, 13 и 15, жестко закрепленных на фундаментной плите 4.

Для обеспечения работы турачки при швартовке достаточно включить электродвигатель. Через редуктор грузовой вал и соединенный с ним промежуточный вал получат вращение. При этом кулачковая муфта еще не соединена с цепной звездочкой. Для обеспечения работы цепной звездочки кулачковую муфту необходимо включить. Таким образом, промежуточный вал вместе с турачкой вращается при работе электродвигателя все время, а цепная звездочка - только при включении кулачковой муфты. Грузовой барабан используется для выполнения грузовых операций.

Брашпили с приводом от двигателя внутреннего сгорания иногда применяют на речном флоте в качестве привода якорно-швартовных механизмов. Наибольшего внимания заслуживают брашпили с приводом от автомобильных, тракторных и других быстроходных двигателей внутреннего сгорания. Эти двигатели, являясь сравнительно легкими и дешевыми, могут быть эффективно использованы на судах вместе с обслуживающим двигатель оборудованием, включая муфту сцепления, коробку передач, а также системы управления и охлаждения двигателя.

Вопросы для повторения
1. Что входит в состав якорно-швартовных механизмов?

2. Как устроен и как работает паровой якорно-швартовный брашпиль?

3. Как устроен и как работает электрический шпиль?

4. Как устроена й как работает швартовная лебедка?

5. Как устроена и как работает комбинированная швартовная лебедка?