Телекоммуникации и компьютерные сети. Конспект лекций. по дисциплине «компьютерные сети и телекоммуникации. Определение и понятие телекоммуникационных технологий

К телекоммуникационным сетям в настоящее время можно отнести:

  • * телефонные сети;
  • * радиосеть;
  • * телевизионные сети;
  • * компьютерные сети

Во всех этих сетях предоставляемым клиентам ресурсом является информация.

Телефонные сети

Телефонные сети оказывают интерактивные услуги, так как два абонента, участвующие в разговоре (или несколько абонентов, если это конференция), попеременно проявляют активность.

Изобретение в 1876 году телефона положило начало развитию телефонных сетей, которые не перестают совершенствоваться и по настоящее время.

Сейчас по каналам телефонной сети общего пользования передается не только речевая информация (при разговоре двух абонентов), но и факсимильные сообщения и цифровые данные.

Вообще говоря, телефонные сети предназначены для передачи по ним аналоговых сигналов. Аналоговый сигнал является непрерывным и может принимать значения из некоторого диапазона. Например, аналоговым сигналом является человеческая речь; в телефоне, телевизоре, радиоприемнике информация также существует в аналоговой форме. Недостатком такой формы представления информации является ее подверженность помехам.

Радиосети и телевизионные сети

Радиосети и телевизионные сети оказывают широковещательные услуги, при этом информация распространяется только в одну сторону - из сети к абонентам, по схеме "один ко многим".

Утрата радиосетями положения главного национального средства рекламы и наступление местного радио началось в 1948 г., с началом эпохи телевидения.

В течение 1950-х гг. "мыльные оперы" "перебежали" с радио на телевидение, что означало окончательный "закат" эпохи радиосетей. В следующее десятилетие сетевые программы ограничивались главным образом новостями и кратким освещением различного рода мероприятий.

Радиосети во многом отличаются от телевизионных сетей; различны также и отношения между радиосетями и их филиалами. В сущности, радиосети являются поставщиками программ, но в отличие от телевидения одна радиостанция может быть членом нескольких радиосетей одновременно. Например, местная радиостанция может транслировать спортивные репортажи одной национальной сети, специальные программы, репортажи, и новости -- другой, развлекательные передачи -- третьей. Если местные телевизионные станции продают рекламное время на основе достоинств сетевых программ, то в радиовещании, для того чтобы получить национальную рекламную поддержку, сети должны исходить из местных рейтингов.

Независимо от отличий в использовании сетевых программ радиостанциями и множества различий с телевидением, радиосети предлагают определенные преимущества, некоторые из которых аналогичны преимуществам телесетей. Например, рекламодатель готовит один заказ на график рекламы для многих станций, оплачивает один счет и ему гарантируется единое качество производства рекламы, входящей в графики всех станций. Сети также обеспечивают экономичный охват и, как само радио, позволяют установить контакты с теми целевыми сегментами аудитории, которые часто являются пассивными пользователями других медиа.

Возрождение радиосетей в значительной степени стало результатом использования технологий спутниковой связи. Доступность такой связи разработчикам национальных радиопрограмм предлагает ряд преимуществ для являющихся филиалами сетей станций.

Компьютерные сети

Компьютерные сети стали логическим результатом эволюции компьютерных и телекоммуникационных технологий. С одной стороны, они являются частным случаем распределенных компьютерных систем, а с другой стороны, могут рассматриваться как средство передачи информации на большие расстояния, для чего в них применяются методы кодирования и мультиплексирования данных, получившие развитие в различных телекоммуникационных системах.

Классифицируя сети по территориальному признаку, различают глобальные (WAN), локальные (LAN) и городские (MAN) сети.

Хронологически первыми появились сети WAN. Они объединяют компьютеры, рассредоточенные на расстоянии сотен и тысяч километров. Первые глобальные компьютерные сети очень многое унаследовали от телефонных сетей. В них часто использовались уже существующие и не очень качественные линии связи, что приводило к низким скоростям передачи данных и ограничивало набор предоставляемых услуг передачей файлов в фоновом режиме и электронной почтой.

Сети LAN ограничены расстояниями в несколько километров; они строятся с использованием высококачественных линий связи, которые позволяют, применяя более простые методы передачи данных, чем в глобальных сетях, достигать высоких скоростей обмена данными до нескольких гигабитов в секунду. Услуги предоставляются в режиме подключения и отличаются разнообразием.

Сети MAN предназначены для обслуживания территории крупного города. При достаточно больших расстояниях между узлами (десятки километров) они обладают качественными линиями связи и поддерживают высокие скорости обмена. Сети MAN обеспечивают экономичное соединение локальных сетей между собой, а также доступ к глобальным сетям.

Важнейший этап в развитии сетей -- появление стандартных сетевых технологий: Ethernet, FDDI, Token Ring, позволяющих быстро и эффективно объединять компьютеры различных типов.

Тенденция сближения различных типов сетей характерна не только для локальных и глобальных компьютерных сетей, но и для телекоммуникационных сетей других типов: телефонных сетей, радиосетей, телевизионных сетей. В настоящее время ведутся активные работы по созданию универсальных мультисервисных сетей, способных одинаково эффективно передавать информацию любого типа: данные, голос и видео.

Компьютерные сети и телекоммуникации

Система доменных имен DNS

Соответствие между доменными именами и IP-адресами может устанавливаться как средствами локального хоста, так и средствами централизованной службы. На раннем этапе развития Internet на каждом хосте вручную создавался текстовый файл с известным именем hosts. Этот файл состоял из некоторого количества строк, каждая из которых содержала одну пару "IP-адрес - доменное имя", например 102.54.94.97 - rhino.acme.com.

По мере роста Internet файлы hosts также росли, и создание масштабируемого решения для разрешения имен стало необходимостью.

Таким решением стала специальная служба - система доменных имен (Domain Name System, DNS). DNS - это централизованная служба, основанная на распределенной базе отображений "доменное имя - IP-адрес". Служба DNS использует в своей работе протокол типа "клиент-сервер". В нем определены DNS-серверы и DNS-кли-енты. DNS-серверы поддерживают распределенную базу отображений, а DNS-клиен-ты обращаются к серверам с запросами о разрешении доменного имени в IP-адрес.

Служба DNS использует текстовые файлы почти такого формата, как и файл hosts, и эти файлы администратор также подготавливает вручную. Однако служба DNS опирается на иерархию доменов, и каждый сервер службы DNS хранит только часть имен сети, а не все имена, как это происходит при использовании файлов hosts. При росте количества узлов в сети проблема масштабирования решается созданием новых доменов и поддоменов имен и добавлением в службу DNS новых серверов.

Для каждого домена имен создается свой DNS-сервер. Этот сервер может хранить отображения "доменное имя - IP-адрес" для всего домена, включая все его поддомены. Однако при этом решение оказывается плохо масштабируемым, так как при добавлении новых поддоменов нагрузка на этот сервер может превысить его возможности. Чаще сервер домена хранит только имена, которые заканчиваются на следующем ниже уровне иерархии по сравнению с именем домена. (Аналогично каталогу файловой системы, который содержит записи о файлах и подкаталогах, непосредственно в него "входящих".) Именно при такой организации службы DNS нагрузка по разрешению имен распределяется более-менее равномерно между всеми DNS-серверами сети. Например, в первом случае DNS-сервер домена mmt.ru будет хранить отображения для всех имен, заканчивающихся на mmt.ru: wwwl.zil.mmt.ru, ftp.zil.mmt.ru, mail.mmt.ru и т. д. Во втором случае этот сервер хранит отображения только имен типа mail.mmt.ru, www.mmt.ru, а все остальные отображения должны храниться на DNS-сервере поддомена zil.



Каждый DNS-сервер кроме таблицы отображений имен содержит ссылки на DNS-серверы своих поддоменов. Эти ссылки связывают отдельные DNS-серверы в единую службу DNS. Ссылки представляют собой IP-адреса соответствующих серверов. Для обслуживания корневого домена выделено несколько дублирующих друг друга DNS-серверов, IP-адреса которых являются широко известными (их можно узнать, например, в InterNIC).

Процедура разрешения DNS-имени во многом аналогична процедуре поиска файловой системой адреса файла по его символьному имени. Действительно, в обоих случаях составное имя отражает иерархическую структуру организации соответствующих справочников - каталогов файлов или таблиц DNS. Здесь домен и доменный DNS-сервер являются аналогом каталога файловой системы. Для доменных имен, так же как и для символьных имен файлов, характерна независимость именования от физического местоположения.

Процедура поиска адреса файла по символьному имени заключается в последовательном просмотре каталогов, начиная с корневого. При этом предварительно проверяется кэш и текущий каталог. Для определения IP-адреса по доменному имени также необходимо просмотреть все DNS-серверы, обслуживающие цепочку поддоменов, входящих в имя хоста, начиная с корневого домена. Существенным же отличием является то, что файловая система расположена на одном компьютере, а служба DNS по своей природе является распределенной.

Существуют две основные схемы разрешения DNS-имен. В первом варианте работу по поиску IP-адреса координирует DNS-клиент:

DNS-клиент обращается к корневому DNS-серверу с указанием полного доменного имени;

DNS-сервер отвечает, указывая адрес следующего DNS-сервера, обслуживающего домен верхнего уровня, заданный в старшей части запрошенного имени;

DNS-клиент делает запрос следующего DNS-сервера, который отсылает его к DNS-серверу нужного поддомена, и т. д., пока не будет найден DNS-сервер, в котором хранится соответствие запрошенного имени IP-адресу. Этот сервер дает окончательный ответ клиенту. Такая схема взаимодействия называется нерекурсивной или итеративной, когда клиент сам итеративно выполняет последовательность запросов к разным серверам имен. Так как эта схема загружает клиента достаточно сложной работой, то она применяется редко. Во втором варианте реализуется рекурсивная процедура:

DNS-клиент запрашивает локальный DNS-сервер, то есть тот сервер, который обслуживает поддомен, к которому принадлежит имя клиента;

Если локальный DNS-сервер знает ответ, то он сразу же возвращает его клиенту; это может соответствовать случаю, когда запрошенное имя входит в тот же поддомен, что и имя клиента, а также может соответствовать случаю, когда сервер уже узнавал данное соответствие для другого клиента и сохранил его в своем кэше;

Если же локальный сервер не знает ответ, то он выполняет итеративные запросы к корневому серверу и т. д. точно так же, как это делал клиент в первом варианте; получив ответ, он передает его клиенту, который все это время просто ждал его от своего локального DNS-сервера.

В этой схеме клиент перепоручает работу своему серверу, поэтому схема называется косвенной или рекурсивной. Практически все DNS-клиенты используют рекурсивную процедуру.

Стек протоколов TCP/IP.

Стек TCP/IP, называемый также стеком DoD и стеком Internet, является одним из наиболее популярных и перспективных стеков коммуникационных протоколов. Если в настоящее время он распространен в основном в сетях с ОС UNIX, то реализация его в последних версиях сетевых операционных систем для персональных компьютеров (Windows NT, NetWare) является хорошей предпосылкой для быстрого роста числа установок стека TCP/IP.

Стек был разработан по инициативе Министерства обороны США (Department of Defence, DoD) более 20 лет назад для связи экспериментальной сети ARPAnet с другими сателлитными сетями как набор общих протоколов для разнородной вычислительной среды. Сеть ARPA поддерживала разработчиков и исследователей в военных областях. В сети ARPA связь между двумя компьютерами осуществлялась с использованием протокола Internet Protocol (IP), который и по сей день является одним из основных в стеке TCP/IP и фигурирует в названии стека.

Большой вклад в развитие стека TCP/IP внес университет Беркли, реализовав протоколы стека в своей версии ОС UNIX. Широкое распространение ОС UNIX привело и к широкому распространению протокола IP и других протоколов стека. На этом же стеке работает всемирная информационная сеть Internet, чье подразделение Internet Engineering Task Force (IETF) вносит основной вклад в совершенствование стандартов стека, публикуемых в форме спецификаций RFC.

Так как стек TCP/IP был разработан до появления модели взаимодействия открытых систем ISO/OSI, то, хотя он также имеет многоуровневую структуру, соответствие уровней стека TCP/IP уровням модели OSI достаточно условно.

Самый нижний (уровень IV) - уровень межсетевых интерфейсов - соответствует физическому и канальному уровням модели OSI. Этот уровень в протоколах TCP/IP не регламентируется, но поддерживает все популярные стандарты физического и канального уровня: для локальных каналов это Ethernet, Token Ring, FDDI, для глобальных каналов - собственные протоколы работы на аналоговых коммутируемых и выделенных линиях SLIP/PPP, которые устанавливают соединения типа "точка - точка" через последовательные каналы глобальных сетей, и протоколы территориальных сетей X.25 и ISDN. Разработана также специальная спецификация, определяющая использование технологии ATM в качестве транспорта канального уровня.

Следующий уровень (уровень III) - это уровень межсетевого взаимодействия, который занимается передачей дейтаграмм с использованием различных локальных сетей, территориальных сетей X.25, линий специальной связи и т. п. В качестве основного протокола сетевого уровня (в терминах модели OSI) в стеке используется протокол IP, который изначально проектировался как протокол передачи пакетов в составных сетях, состоящих из большого количества локальных сетей, объединенных как локальными, так и глобальными связями. Поэтому протокол IP хорошо работает в сетях со сложной топологией, рационально используя наличие в них подсистем и экономно расходуя пропускную способность низкоскоростных линий связи. Протокол IP является дейтаграммным протоколом.

К уровню межсетевого взаимодействия относятся и все протоколы, связанные с составлением и модификацией таблиц маршрутизации, такие как протоколы сбора маршрутной информации RIP (Routing Internet Protocol) и OSPF (Open Shortest Path First), а также протокол межсетевых управляющих сообщений ICMP (Internet Control Message Protocol). Последний протокол предназначен для обмена информацией об ошибках между маршрутизатором и шлюзом, системой-источником и системой-приемником, то есть для организации обратной связи. С помощью специальных пакетов ICMP сообщается о невозможности доставки пакета, о превышении времени жизни или продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т.п.

Следующий уровень (уровень II) называется основным. На этом уровне функционируют протокол управления передачей TCP (Transmission Control Protocol) и протокол дейтаграмм пользователя UDP (User Datagram Protocol). Протокол TCP обеспечивает устойчивое виртуальное соединение между удаленными прикладными процессами. Протокол UDP обеспечивает передачу прикладных пакетов дейтаграммным методом, то есть без установления виртуального соединения, и поэтому требует меньших накладных расходов, чем TCP.

Верхний уровень (уровень I) называется прикладным. За долгие годы использования в сетях различных стран и организаций стек TCP/IP накопил большое количество протоколов и сервисов прикладного уровня. К ним относятся такие широко используемые протоколы, как протокол копирования файлов FTP, протокол эмуляции терминала telnet, почтовый протокол SMTP, используемый в электронной почте сети Internet и ее российской ветви РЕЛКОМ, гипертекстовые сервисы доступа к удаленной информации, такие как WWW и многие другие. Остановимся несколько подробнее на некоторых из них, наиболее тесно связанных с тематикой данного курса.

Протокол SNMP (Simple Network Management Protocol) используется для организации сетевого управления. Проблема управления разделяется здесь на две задачи. Первая задача связана с передачей информации. Протоколы передачи управляющей информации определяют процедуру взаимодействия сервера с программой-клиентом, работающей на хосте администратора. Они определяют форматы сообщений, которыми обмениваются клиенты и серверы, а также форматы имен и адресов. Вторая задача связана с контролируемыми данными. Стандарты регламентируют, какие данные должны сохраняться и накапливаться в шлюзах, имена этих данных и синтаксис этих имен. В стандарте SNMP определена спецификация информационной базы данных управления сетью. Эта спецификация, известная как база данных MIB (Management Information Base), определяет те элементы данных, которые хост или шлюз должен сохранять, и допустимые операции над ними.

Протокол пересылки файлов FTP (File Transfer Protocol) реализует удаленный доступ к файлу. Для того, чтобы обеспечить надежную передачу, FTP использует в качестве транспорта протокол с установлением соединений - TCP. Кроме пересылки файлов протокол, FTP предлагает и другие услуги. Так пользователю предоставляется возможность интерактивной работы с удаленной машиной, например, он может распечатать содержимое ее каталогов, FTP позволяет пользователю указывать тип и формат запоминаемых данных. Наконец, FTP выполняет аутентификацию пользователей. Прежде, чем получить доступ к файлу, в соответствии с протоколом пользователи должны сообщить свое имя и пароль.

В стеке TCP/IP протокол FTP предлагает наиболее широкий набор услуг для работы с файлами, однако он является и самым сложным для программирования. Приложения, которым не требуются все возможности FTP, могут использовать другой, более экономичный протокол - простейший протокол пересылки файлов TFTP (Trivial File Transfer Protocol). Этот протокол реализует только передачу файлов, причем в качестве транспорта используется более простой, чем TCP, протокол без установления соединения - UDP.

Протокол telnet обеспечивает передачу потока байтов между процессами, а также между процессом и терминалом. Наиболее часто этот протокол используется для эмуляции терминала удаленной ЭВМ.

Протокол BGP

Общая схема работы BGP такова. BGP-маршрутизаторы соседних АС, решившие обмениваться маршрутной информацией, устанавливают между собой соединения по протоколу BGP и становятся BGP-соседями (BGP-peers).

Далее BGP использует подход под названием path vector, являющийся развитием дистанционно-векторного подхода. BGP-соседи рассылают (анонсируют, advertise) друг другу векторы путей (path vectors). Вектор путей, в отличие от вектора расстояний, содержит не просто адрес сети и расстояние до нее, а адрес сети и список атрибутов (path attributes), описывающих различные характеристики маршрута от маршрутизатора-отправителя в указанную сеть. В дальнейшем для краткости мы будем называть набор данных, состоящих из адреса сети и атрибутов пути до этой сети, маршрутом в данную сеть.

Реализация BGP

Пара BGP-соседей устанавливает между собой соединение по протоколу TCP, порт 179. Соседи, принадлежащие разным АС, должны быть доступны друг другу непосредственно; для соседей из одной АС такого ограничения нет, поскольку протокол внутренней маршрутизации обеспечит наличие всех необходимых маршрутов между узлами одной автономной системы.

Поток информации, которым обмениваются BGP-соседи по протоколу TCP, состоит из последовательности BGP-сообщений. Максимальная длина сообщения 4096 октетов, минимальная - 19. Имеется 4 типа сообщений.

Типы BGP-сообщений

  • OPEN - посылается после установления TCP-соединения. Ответом на OPEN является сообщение KEEPALIVE, если вторая сторона согласна стать BGP-соседом; иначе посылается сообщение NOTIFICATION с кодом, поясняющим причину отказа, и соединение разрывается.
  • KEEPALIVE - сообщение предназначено для подтверждения согласия установить соседские отношения, а также для мониторинга активности открытого соединения: для этого BGP-соседи обмениваются KEEPALIVE-сообщениями через определенные интервалы времени.
  • UPDATE - сообщение предназначено для анонсирования и отзыва маршрутов. После установления соединения с помощью сообщений UPDATE пересылаются все маршруты, которые маршрутизатор хочет объявить соседу (full update), после чего пересылаются только данные о добавленных или удаленных маршрутах по мере их появления (partial update).
  • NOTIFICATION - сообщение этого типа используется для информирования соседа о причине закрытия соединения. После отправления этого сообщения BGP-соединение закрывается.

Формат BGP-сообщения

Сообщение протокола BGP состоит из заголовка и тела. Заголовок имеет длину 19 октетов и состоит из следующих полей:

· маркер: в сообщении OPEN всегда, и при работе без аутентификации - в других собщениях, заполнен единицами. Иначе содержит аутентификационную информацию. Сопутствующая функция маркера - повышение надежности выделения границы сообщения в потоке данных.

· длина сообщения в октетах, включая заголовок.

Протокол IGRP

Протокол маршрутизации внутренних роутеров (Interior Gateway Routing Protokol-IGRP) является протоколом маршрутизации, разработанным в середине 1980 гг. компанией Cisco Systems, Inc. Главной целью было обеспечение живучего протокола для маршрутизации в пределах автономной системы (AS), имеющей произвольно сложную топологию и включающую в себя носитель с разнообразными характеристиками ширины полосы и задержки.

IGRP является протоколом внутренних роутеров (IGP) с вектором расстояния. Протоколы маршрутизации с вектором расстояния требуют от каждого роутера отправления через определенные интервалы времени всем соседним роутерам всей или части своей маршрутной таблицы в сообщениях о корректировке маршрута. По мере того, как маршрутная информация распространяется по сети, роутеры могут вычислять расстояния до всех узлов объединенной сети.

IGRP использует комбинацию (вектор) показателей. Задержка объединенной сети (internetwork delay), ширина полосы (bandwidth), надежность (reliability) и нагрузка (load) - все эти показатели учитываются в виде коэффициентов при принятии маршрутного решения. Администраторы сети могут устанавливать факторы весомости для каждого из этих показателей. IGRP предусматривает широкий диапазон значений для своих показателей.

Для обеспечения дополнительной гибкости IGRP разрешает многотрактовую маршрутизацию. Дублированные линии с одинаковой шириной полосы могут пропускать отдельный поток трафика циклическим способом с автоматическим переключением на вторую линию, если первая линия выходит из строя.

Формат пакета

Первое поле пакета IGRP содержит номер версии (version number).

Поле операционного кода (opcode). Это поле обозначает тип пакета. Операционный код, равный 1, обозначает пакет корректировки (содержат заголовок, за которым сразу же идут записи данных маршрутной таблицы); равный 2-пакет запроса (используются источником для запроса маршрутной таблицы из другого роутера.

Поле выпуска (edition). Это значение номера выпуска используется для того, чтобы позволить роутерам избежать обработки корректировок, содержащих информацию, которую они уже видели.

Следующие три поля обозначают номер подсетей, номер главных сетей и номер внешних сетей в пакете корректировки.

Поле контрольной суммы (checksum). Вычисление контрольной суммы позволяет принимающему роутеру проверять достоверность входящего пакета.

Характеристики стабильности

IGRP обладает рядом характеристик, предназначенных для повышения своей стабильности. В их число входят:

Временные удерживания изменений используется для того, чтобы помешать регулярным сообщениям о коррректировке незаконно восстановить в правах маршрут, который возможно был испорчен. Период удерживания изменений обычно рассчитывается так, чтобы он был больше периода времени, необходимого для корректировки всей сети в соответствии с каким-либо изменением маршрутизации.

Расщепленные горизонты Понятие о расщепленных горизонтах проистекает из того факта, что никогда не бывает полезным отправлять информацию о каком-нибудь маршруте обратно в том направлении, из которого она пришла. Правило о расщепленных горизонтах помогает предотвращать зацикливание маршрутов.

Корректировки отмены маршрута предназначены для борьбы с более крупными маршрутными петлями. Увеличение значений показателей маршрутизации обычно указывает на появление маршрутных петель. В этом случае посылаются корректировки отмены, чтобы удалить этот маршрут и перевести его в состояние удерживания.

IGRP обеспечивает ряд таймеров и переменных, содержащих временные интервалы. Сюда входят

  • таймер корректировки (определяет, как часто должны отправляться сообщения о корректировке маршрутов),
  • таймер недействующих маршрутов, определяет, сколько времени должен ожидать роутер при отсутствии сообщений о корректировке какого-нибудь конкретного маршрута, прежде чем об"явить этот маршрут недействующим
  • период времени удерживания изменений
  • таймер отключения. указывает, сколько времени должно пройти прежде, чем какой-нибудь роутер должен быть исключен из маршрутной таблицы.

Протоколы сетевого уровня реализуются, как правило, в виде программных модулей и выполняются на конечных узлах-компьютерах, называемых хостами, а также на промежуточных узлах - маршрутизаторах, называемых шлюзами. Функции маршрутизаторов могут выполнять как специализированные устройства, так и универсальн

Понятие internetworking

Основная идея введения сетевого уровня состоит в следующем. Сеть в общем случае рассматривается как совокупность нескольких сетей и называется составной сетью или интерсетью (internetwork или internet) . Сети, входящие в составную сеть, называются подсетями (subnet) , составляющими сетями или просто сетями (рис. 5.1). Подсети соединяются между собой маршрутизаторами. Компонентами составной сети могут являться как локальные, так и глобальные сети. Внутренняя структура каждой сети на рисунке не показана, так как она не имеет значения при рассмотрении сетевого протокола. Все узлы в пределах одной подсети взаимодействуют, используя единую для них технологию. Так, в составную сеть, показанную на рисунке, входит несколько сетей разных технологий: локальные сети Ethernet, Fast Ethernet, Token Ring, FDDI и глобальные сети frame relay, X.25, ISDN. Каждая из этих технологий достаточна для того, чтобы организовать взаимодействие всех узлов в своей подсети, но не способна построить информационную связь между произвольно выбранными узлами, принадлежащим и разным подсетям, например между узлом А и узлом В на рис. 5.1. Следовательно, для организации взаимодействия между любой произвольной парой узлов этой «большой» составной сети требуются дополнительные средства. Такие средства и предоставляет сетевой уровень.

Сетевой уровень выступает в качестве координатора, организующего работу всех подсетей, лежащих на пути продвижения пакета по составной сети. Для перемещения данных в пределах подсетей сетевой уровень обращается к используемым в этих подсетях технологиям.

Хотя многие технологии локальных сетей (Ethernet, Token Ring, FDDI, Fast Ethernet и др.) используют одну и ту же систему адресации узлов на основе МАС - адресов, существует немало технологий (X.25, АТМ, frame relay), в которых применяются другие схемы адресации. Адреса, присвоенные узлам в соответствии с технологиями подсетей, называют локальными. Чтобы сетевой уровень мог выполнить свою задачу, ему необходима собственная система адресации, не зависящая от способов адресации узлов в отдельных подсетях, которая позволила бы на сетевом уровне универсальным и однозначным способами идентифицировать любой узел составной сети.

Естественным способом формирования сетевого адреса является уникальная нумерация всех подсетей составной сети и нумерация всех узлов в пределах каждой подсети. Таким образом, сетевой адрес представляет собой пару: номер сети (подсети) и номер узла.

В качестве номера узла может выступать либо локальный адрес этого узла (такая схема принята в стеке IPX/SPX), либо некоторое число, никак не связанное с локальной технологией, которое однозначно идентифицирует узел в пределах данной подсети. В первом случае сетевой адрес становится зависимым от локальных технологий, что ограничивает его применение. Например, сетевые адреса IPX/SPX рассчитаны на работу в составных сетях, объединяющих сети, в которых используются только МАС - адреса или адреса аналогичного формата. Второй подход более универсален, он характерен для стека TCP/IP. И в том и другом случае каждый узел составной сети имеет наряду со своим локальным адресом еще один - универсальный сетевой адрес.

Данные, которые поступают на сетевой уровень и которые необходимо передать через составную сеть, снабжаются заголовком сетевого уровня. Данные вместе с заголовком образуют пакет. Заголовок пакета сетевого уровня имеет унифицированный формат, не зависящий от форматов кадров канального уровня тех сетей, которые могут входить в объединенную сеть, и несет наряду с другой служебной информацией данные о номере сети, которой предназначается этот пакет. Сетевой уровень определяет маршрут и перемещает пакет между подсетями.

При передаче пакета из одной подсети в другую пакет сетевого уровня, инкапсулированный в прибывший канальный кадр первой подсети, освобождается от заголовков этого кадра и окружается заголовками кадра канального уровня следующей подсети. Информацией, на основе которой делается эта замена, являются служебные поля пакета сетевого уровня. В поле адреса назначения нового кадра указывается локальный адрес следующего маршрутизатора.

Концентраторы Ethernet

В технологии Ethernet устройства, объединяющие несколько физических сегментов коаксиального кабеля в единую разделяемую среду, использовались давно и получили название "повторителей" по своей основной функции - повторению на всех своих портах сигналов, полученных на входе одного из портов. В сетях на основе коаксиального кабеля обычными являлись двухпортовые повторители, соединяющие только два сегмента кабеля, поэтому термин концентратор к ним обычно не применялся.

С появлением спецификации lOBase-T для витой пары повторитель стал неотъемлемой частью сети Ethernet, так как без него связь можно было организовать только между двумя узлами сети. Многопортовые повторители Ethernet на витой паре стали называть концентраторами или хабами, так как в одном устройстве действительно концентрировались связи между большим количеством узлов сети. Концентратор Ethernet обычно имеет от 8 до 72 портов, причем основная часть портов предназначена для подключения кабелей на витой паре. На рис. 2. показан типичный концентратор Ethernet, рассчитанный на образование небольших сегментов разделяемой среды. Он имеет 16 портов стандарта lOBase-T с разъемами RJ-45, а также один порт AUI для подключения внешнего трансивера.

Обычно к этому порту подключается трансивер, работающий на коаксиал или оптоволокно. С помощью этого трансивера концентратор подключается к магистральному кабелю, соединяющему несколько концентраторов между собой, либо таким образом обеспечивается подключение станции, удаленной от концентратора более чем на 100 м.

Рис. 15. Концентратор Ethernet.

Для соединения концентраторов технологии lOBase-T между собой в иерархическую систему коаксиальный или оптоволоконный кабель не обязателен, можно применять те же порты, что и для подключения конечных станций, с учетом одного обстоятельства. Дело в том, что обычный порт RJ-45, предназначенный для подключения сетевого адаптера и называемый MDI-X (кроссированный MDI), имеет инвертированную разводку контактов разъема, чтобы сетевой адаптер можно было подключить к концентратору с помощью стандартного соединительного кабеля, не кроссирующего контакты.

В случае соединения концентраторов через стандартный порт MDI-X приходится использовать нестандартный кабель с перекрестным соединением пар. Поэтому некоторые изготовители снабжают концентратор выделенным портом MDI, в котором нет кроссирования пар. Таким образом, два концентратора можно соединить обычным некроссированным кабелем, если это делать через порт MDI-X одного концентратора и порт MDI второго. Чаще один порт концентратора может работать и как порт MDI-X, и как порт MDI, в зависимости от положения кнопочного переключателя.

Многопортовый повторитель-концентратор Ethernet может по-разному рассматриваться при использовании правила 4-х хабов. В большинстве моделей все порты связаны с единственным блоком повторения, и при прохождении сигнала между двумя портами повторителя блок повторения вносит задержку всего один раз. Поэтому такой концентратор нужно считать одним повторителем с ограничениями, накладываемыми правилом 4-х хабов. Но существуют и другие модели повторителей, в которых на несколько портов имеется свой блок повторения.

В таком случае каждый блок повторения нужно считать отдельным повторителем и учитывать его отдельно в правиле 4-х хабов.
Некоторые отличия могут демонстрировать модели концентраторов, работающие на одномодовый волоконно-оптический кабель. Дальность сегмента кабеля, поддерживаемого концентратором FDDI, на таком кабеле может значительно отличаться в зависимости от мощности лазерного излучателя - от 10 до 40 км.

Однако если существующие различия при выполнении основной функции концентраторов не столь велики, то их намного превосходит разброс в возможностях реализации концентраторами дополнительных функций. Отключение портов.

Очень полезной при эксплуатации сети является способность концентратора отключать некорректно работающие порты, изолируя тем самым остальную часть сети от возникших в узле проблем. Эту функцию называют автосегментацией (autopartitioning). Для концентратора FDDI эта функция для многих ошибочных ситуаций является основной, так как определена в протоколе. В то же время для концентратора Ethernet или Token Ring функция автосегментации для многих ситуаций является дополнительной, так как стандарт не описывает реакцию концентратора на эту ситуацию. Основной причиной отключения порта в стандартах Ethernet и Fast Ethernet является отсутствие ответа на последовательность импульсов link test, посылаемых во все порты каждые 16 мс. В этом случае неисправный порт переводится в состояние "отключен", но импульсы link test будут продолжать посылаться в порт с тем, чтобы при восстановлении устройства работа с ним была продолжена автоматически.

Рассмотрим ситуации, в которых концентраторы Ethernet и Fast Ethernet выполняют отключение порта:

o Ошибки на уровне кадра. Если интенсивность прохождения через порт кадров, имеющих ошибки, превышает заданный порог, то порт отключается, а затем, при отсутствии ошибок в течение заданного времени, включается снова. Такими ошибками могут быть: неверная контрольная сумма, неверная длина кадра (больше 1518 байт или меньше 64 байт), неоформленный заголовок кадра.
o Множественные коллизии. Если концентратор фиксирует, что источником коллизии был один и тот же порт 60 раз подряд, то порт отключается. Через некоторое время порт снова будет включен.

o Затянувшаяся передача (jabber). Как и сетевой адаптер, концентратор контролирует время прохождения одного кадра через порт. Если это время превышает время передачи кадра максимальной длины в 3 раза, то порт отключается.

Поддержка резервных связей

Так как использование резервных связей в концентраторах определено только в стандарте FDDI, то для остальных стандартов разработчики концентраторов поддерживают такую функцию с помощью своих частных решений. Например, концентраторы Ethernet/Fast Ethernet могут образовывать только иерархические связи без петель. Поэтому резервные связи всегда должны соединять отключенные порты, чтобы не нарушать логику работы сети.

Обычно при конфигурировании концентратора администратор должен определить, какие порты являются основными, а какие по отношению к ним - резервными (рис. 16). Если по какой-либо причине порт отключается (срабатывает механизм автосегментации), концентратор делает активным его резервный порт.

Рис. 16.

Рис. 16. Резервные связи между концентраторами Ethernet.

При рассмотрении некоторых моделей концентраторов возникает вопрос - зачем в этой модели имеется такое большое количество портов, например 192 или 240? Имеет ли смысл разделять среду в 10 или 16 Мбит/с между таким большим количеством станций? Возможно, десять - пятнадцать лет назад ответ в некоторых случаях мог бы быть и положительным, например, для тех сетей, в которых компьютеры пользовались сетью только для отправки небольших почтовых сообщений или для переписывания небольшого текстового файла.

Сегодня таких сетей осталось крайне мало, и даже 5 компьютеров могут полностью загрузить сегмент Ethernet или Token Ring, a в некоторых случаях - и сегмент Fast Ethernet. Для чего же тогда нужен концентратор с большим количеством портов, если ими практически нельзя воспользоваться из-за ограничений по пропускной способности, приходящейся на одну станцию? Ответ состоит в том, что в таких концентраторах имеется несколько несвязанных внутренних шин, которые предназначены для создания нескольких разделяемых сред.

Например, концентратор, изображенный на рис. 17, имеет три внутренние шины Ethernet. Если, например, в таком концентраторе 72 порта, то каждый из этих портов может быть связан с любой из трех внутренних шин. На рисунке первые два компьютера связаны с шиной Ethernet 3, а третий и четвертый компьютеры - с шиной Ethernet 1. Первые два компьютера образуют один разделяемый сегмент, а третий и четвертый - другой разделяемый сегмент.

Рис. 17. Многосегментный концентратор.

Между собой компьютеры, подключенные к разным сегментам, общаться через концентратор не могут, так как шины внутри концентратора никак не связаны. Многосегментные концентраторы нужны для создания разделяемых сегментов, состав которых может легко изменяться. Большинство многосегментных концентраторов, например System 5000 компании Nortel Networks или PortSwitch Hub компании 3Com, позволяют выполнять операцию соединения порта с одной из внутренних шин чисто программным способом, например с помощью локального конфигурирования через консольный порт.

В результате администратор сети может присоединять компьютеры пользователей к любым портам концентратора, а затем с помощью программы конфигурирования концентратора управлять составом каждого сегмента. Если завтра сегмент 1 станет перегруженным, то его компьютеры можно распределить между оставшимися сегментами концентратора.

Возможность многосегментного концентратора программно изменять связи портов с внутренними шинами называется конфигурационной коммутацией (configuration switching).
ВНИМАНИЕ
Конфигурационная коммутация не имеет ничего общего с коммутацией кадров, которую выполняют мосты и коммутаторы. Многосегментные концентраторы - это программируемая основа больших сетей. Для соединения сегментов между собой нужны устройства другого типа - мосты/коммутаторы или маршрутизаторы. Такое межсетевое устройство должно подключаться к нескольким портам многосегментного концентратора, подсоединенным к разным внутренним шинам, и выполнять передачу кадров или пакетов между сегментами точно так же, как если бы они были образованы отдельными устройствами-концентраторами.

Для крупных сетей многосегментный концентратор играет роль интеллектуального кроссового шкафа, который выполняет новое соединение не за счет механического перемещения вилки кабеля в новый порт, а за счет программного изменения внутренней конфигурации устройства. Управление концентратором по протоколу SNMP.

Как видно из описания дополнительных функций, многие из них требуют конфигурирования концентратора. Это конфигурирование может производиться локально, через интерфейс RS-232C, который имеется у любого концентратора, имеющего блок управления. Кроме конфигурирования в большой сети очень полезна функция наблюдения за состоянием концентратора: работоспособен ли он, в каком состоянии находятся его порты.

Понятие компьютерных сетей; локальные и глобальные сети; топологии сетей; сетевые операционные системы.

Цель лекции:

- изучитьаппаратные и программные средства локальных и глобальных сетей.

Появление персональных компьютеров потребовало нового подхода к организации системы обработки данных, к созданию новых информационных технологий. Возникла потребность пе­рехода от использования отдельных компьютеров в системах централи­зованной обработки данных к распределенной обработке дан­ ных в компьютерной вычислительной сети . Абонентами сети могут быть отдельные компь­ютеры, компьютерные комплексы, терминалы, промышленные роботы, станки с числовым программным управлением и т. д. В зависимости от территориального расположения абонентов компьютерные сети делятся на глобальные , региональные и локальные . Объединение глобальных, региональных и локальных компь­ютерных сетей позволяет создаватьмногосетевые иерархии , обеспечивающие мощные средства обработки огромных информаци­онных массивов и доступ к неограниченным информационным ресурсам.

В общем случае компьютерная сетьпредставляется совокуп­ностью трех вложенных друг в друга подсистем: сети рабочих станций , сети серверов и базовой сети передачи данных.

Базовыми требованиями, определяющими архитектуру компь­ютерных сетей, являются следующие: открытость , живучесть , адаптивность , безопасность информации. Указанные требования обеспечиваются модульной организа­цией управления процессами в сети, реализуемой по многоуров­невой схеме. Число уровней и распределение функций между ними существенно влияет на сложность программного обеспечения ком­пьютеров, входящих в сеть, и на эффективность сети. Формаль­ной процедуры выбора числа уровней не существует.

В качестве эталонной модели принята семиуровневая схема: уровень 1 - физический, у ровень 2 - канальный, у ровень 3 -сетевой, уровень 4 –транспортный , 5 - сеансовый , 6 - представительный , 7 - прикладной . Уровни 1-3 организуют базовую сеть передачи данных как систему, обеспечивающую надежную передачу данных между або­нентами сети. На уровне 5 по запросам процессов создаются порты для приема и передачи сообщений и орга­низуются соединения - логические каналы.

Порядок реализации связей в сети регулируется протоколами .

Базовые принципы организации компьютерной сети опреде­ляют ее основные характеристики: операционные возможности , производительность , время доставки сообщений и стоимость предоставляемых услуг.

Информационные системы, построенные на базе локальных вычислительных сетей , обеспечивают решение следующих задач: хранение данных, обработка данных, организация доступа пользователей к данным, передача данных и результатов их обработки пользователям.

Компьютерные сети реализуют распределенную обработку дан­ных. Здесь обработка данных распределяется между двумя объек­тами: клиентом и сервером . Сервер обеспечивает хранение данных общего пользования и организует доступ к этим данным. В процессе обработки данных клиент формирует запрос к серверу на выполнение сложных процедур. Сервер выполняет запрос, и результаты передает кли­енту. Подобная модель вычислительной сети получила названиеархи­ тектуры клиент-сервер.

Другой моделью вычислительной сети является файл-сервер , запускающий операционную систему и управляющий потоком данных, передаваемых по сети. Отдельные рабочие станции и любые, совместно используемые периферийные устройства (принтеры, сканеры, модемы и т.д.) подсоединяются к файл-серверу. Каждая рабочая станция работает под управлением собственной дисковой операционной системы, но в отличие от автономного персонального компьютера, содержит плату сетевого интерфейса и физически соединена кабелями с файл-сервером. Рабочая станция запускает оболочку сети, которая позволяет использовать файлы и программы, хранящиеся на файл-сервере, так же легко, как и находящиеся на ее собственных дисках. Чтобы включить рабочую станцию в состав сети, оболочка сетевой операционной системы загружается в начало операционной системы компьютера. Оболочка сохраняет большую часть команд и функций операционной системы и добавляет локальной системе больше функций, что придает ей гибкость.

По признаку распределения функций локальные компьютер­ные сети делятся на одноранговые и двухранговые (иерархичес­кие сети или сети с выделенным сервером). В одноранговой сети компьютер выступает и в роли клиента, и в роли сервера. Одноранговое разделение ресурсов является вполне при­емлемым для малых офисов с 5-10 пользователями, объединяя их в рабочую группу. Двухранговая сеть организуется на основе сервера, на котором регистрируются пользователи сети. Для современных компьютерных сетей типичной является смешанная сеть, объединяющая рабочие станции и серверы, при­чем часть рабочих станций образует одноранговые сети, а другая часть принадлежит двухранговым сетям.

Геометрическая схема соединения (конфигурация физического подключения) узлов сети называется топологией сети . Существу­ет большое количество вариантов сетевых топологий, базовыми из которых являются шина , кольцо , звезда . Локальная сеть может использовать одну из перечисленных топологий. Это зависит от количества объединяемых компьютеров, их взаимного расположения и других условий.

Проблемы шинной топологии возникают в следующих случаях: при разрыве в любой точке шины; при выходе из строя сетевого адаптера одного из компьютеров и передачи на шину сигналов с помехами; при необходимости подключения к сети нового компьютера. Недостатками кольцевой организации являются разрывы в любом месте кольца, прекращающие работу всей сети; зависимость времени передачи сообщения временем последовательного срабатывания каждого узла, находящегося между отправителем и получателем; возможность непреднамеренного искажения информации из-за прохождения данных через каждый узел. Комбинация базовых топологий (гибридная)обеспечивает получение широкого спектра решений, аккумулиру­ющих достоинства и недостатки базовых.

В различных сетях существуют различные процедуры, описывающие методы доступа к сетевым каналам (протоколы передачи данных ). Наибольшее распространение получили конкретные реализации методов доступа: Ethernet , Arcnet и Token - Ring .

Метод доступа Ethernet , разработанный фирмой Xerox в 1975 году, пользуется наибольшей популярностью, так как обеспечивает высокую скорость передачи данных и не исключает возможности одновременной передачи сообщений двумя или несколькими станциями. Для данного метода доступа используется топология «общая шина».

Метод доступа Arcnet разработанный фирмой DatapointCorp . получил широкое распространение, благодаря тому, что оборудование Arcnet дешевле, чем оборудование Ethernet или Token - Ring . Arcnet используется в локальных сетях с топологией «звезда».

Метод доступа Token - Ring был разработан фирмой IBM и рассчитан на кольцевую топологию сети.

Кроме проблем создания локальных вычислительных сетей имеется также проблема расширения (объединения) компьютер­ных сетей. Вычислительная сеть, созданная на определенном этапе развития информационной системы, со временем может перестать удовлетворять потребности всех пользо­вателей. В то же время физические свойства сигналов, каналов передачи данных и конструктивные особенности сетевых компо­нент накладывают жесткие ограничения на количество узлов и геометрические размеры сети. Для объединения локальных сетей применя­ются следующие устройства: повторитель , мост , маршрутизатор ,шлюз .

Крупные локальные сети объединяются в глобальные. Функционирование глобальных сетей поддерживают центры управления (специальные компьютеры), которые служат только для административных целей, ведут учет, предоставляют пользователям информацию относительно ресурсов сети, проверяют работу сети. Пользователи общаются с другими абонентами сети посредством специального коммуникационного программного обеспечения. В настоящее время наиболее крупной глобальной сетью, охватывающей практически все страны мира, считается Internet .

Internet обеспечивает обмен ин­формацией между всеми компьютерами, которые входят в сети, подключенные к ней, и предоставляет в распоряжение своих пользователей мно­жество всевозможных ресурсов. Тип компьютера и используемая им опера­ционная система значения не имеют.

Для того чтобы информация передавалась между компьютера­ми независимо от используемых линий связи, типа компьютера и про­граммного обеспечения, разработаны специальные протоколы пе­редачи данных. Они работают по принципу разбиения данных на блоки определенного размера (пакеты), которые последовательно отсылаются адресату. В Интернете используются два основных протокола: межсетевой протокол IP и протокол управления передачей TCP . Так как эти протоколы взаи­мосвязаны, обычно говорят о протоколе TCP / IP .

Основными ячейками Internet являются локальные вычислительные сети. Если некоторая локальная сеть подключена к Internet , то каждая рабочая станция этой сети также может подключаться к Internet . Компьютеры, самостоятельно подключаемые к Internet , называются хост-компьютерами .

Каждый подключенный к сети компьютер имеет свой адрес. К адресам станций предъявляются специальные требования. Адрес должен иметь формат, позволяющий вести его обработку автома­тически, и должен нести информацию о своем владельце. С этой целью для каждого компьютера устанавливаются два адреса:циф­ровой IP -адрес идоменный адрес . Первый из них более понятен компьютеру, второй - человеку. Оба эти адреса являются равноправными.

Для упрощения связи абонентов сети все ее адресное пространство разбито на отдельные области – домены , которые в систе­ме адресов Internet представлены геогра­фическими регионами и имеют имя, состоящее из двух букв. Существуют домены, разделенные по тематическим признакам, имеющие трехбуквенное сокращенное название. Компьютерное имя включает как минимум два уровня доме­нов, которые отделяются друг от друга точкой. Справа указывается домен верхнего уровня, слева - поддомены общего домена.

Для обработки пути поиска в доменах имеются специальные серверы имен .

Использование технологий Интернета необязательно реализуется в рамках всемирной информационной сети. Технологии, применяемые в глобальной сети, пригодны и для создания мощ­ных корпоративных информационных систем и систем обеспече­ния коллективной работы (IntraNet ).

Компоненты (протоколы, программы, компьютеры-серверы), собранные вместе для обеспечения одной из услуг Internet , называются сервисами (услугами, службами) сети. Одним из важнейших сервисов является электронная почта . Локальные системы электронной почты характеризуются сек­ретностью, низкой стоимостью и высокой функциональностью. Существуют два основных вида локальных систем: централизо­ ванные системы и системы на основе локальных сетей . Существует множество программных пакетов электронной по­чты. К ним относятся Microsoft Outlook Express , Microsoft Mail , Novell Group Wise и другие. Возможности электронной почты могут быть использованы в Internet . При этом используется система адресов, базирующа­яся на доменном адресе компьютера, подключенного к Internet .

Дополнительную информацию по теме можно получить в .

Каждому поколению свойственно разрабатывать новые технические средства, совершенствовать систему учета, обработки, передачи и хранения данных. Первыми телекоммуникационными средствами признан телеграф, телефон, телетайп, радиоприемник. Середина XIX столетия отмечена массовым использованием спутниковой связи, вычислительной техники, компьютерной сети. В результате это положительно отразилось на развитии новых телекоммуникационных технологий.

Современный мир невозможен без телекоммуникационных технологий, которые стирают государственные границы и расстояние между людьми, делают доступной мобильную и видеосвязь и позволяют решать множество задач в сфере управления, образования, коммерции. Каждый человек сталкивается с ними ежедневно, деля телефонные звонки, проверяя почту или покупая товары в интернет-магазинах.

Определение и понятие телекоммуникационных технологий

Общее понятие информационных и коммуникационных технологий включает в себя совокупность методов, процессов и устройств, позволяющих получать, собирать, накапливать, хранить, обрабатывать и передавать информацию, закодированную в цифровом виде или существующую в аналоговом виде.

В более узком смысле под телекоммуникационными технологиями понимается совокупность программных и аппаратных средств, позволяющих устанавливать связь без использования проводов и передавать пакеты информации, включающие также аудио и видеоинформацию.

Виды телекоммуникационных технологий

Телекоммуникационные технологии могут быть рассмотрены как сервисы, предоставляемые провайдерами различного уровня.

По этому принципу можно выделить следующие виды телекоммуникационных технологий:

  • телефонная связь, современная телефонная связь позволяет легко переключаться с аналогового стандарта на цифровой, подключать к интернет городские телефоны и соединять в одну сеть аналоговые и мобильные устройства;

  • радиосвязь, которая сегодня превратилась в сотовую связь, телефон, перемещаясь в пределах сети, оказывается в зоне действия различных передающих устройств;

  • спутниковая связь, которая используется провайдерами для создания систем мобильной связи и для государственных систем связи;

  • интернет - наиболее распространенный вид телекоммуникационных технологий, при которых подключение к сети может осуществляться как проводным, так и беспроводным способом.

Информационно-телекоммуникационные сети и интернет

Телекоммуникационные технологии, используемые в интернете, сейчас переживают этап бурного развития и роста.

Создаются новые сети различных типов, среди которых:

  • локальные сети компаний или учреждений, связь между компьютерами в них осуществляется и проводным и беспроводным способом, количество пользователей этих сетей ограничено. Локальные сети могут быть корпоративными, в некоторых странах создаются и городские локальные сети;

  • глобальные сети (Wide Area Network - WAN) представляют совокупность большого количества узлов-компьютеров, расположенных в разных странах мира и связанных между собой каналами оптово-волоконной связи. К этим сетям, представляющим услуги провайдеров, подключаются локальные сети.

Технические и программные средства телекоммуникационных технологий

Работоспособность интернета основана на использовании сетевых узлов и каналов связи. К узлам относятся как отдельные компьютеры, так и хостинги, предоставляющие IP-адреса и доменные имена.

Каналы связи, в общем, делятся на 4 типа:

  • аналоговые телефонные сети;

  • провода, по которым передается электричество;

  • оптоволоконные каналы связи;

  • беспроводные каналы связи, модемные или спутниковые.

К телекоммуникационным каналам связи относятся, в основном, третий и четвертый типы.

Среди коммуникаций, используемых для организации связи, можно отдельно отметить программы, обеспечивающие работу телекоммуникационного оборудования такого, как:

  • IP-АТС;
  • маршрутизаторы;
  • компьютеры.

Отдельно следует назвать прикладные программы, упрощающие работу с обработкой массивов информации.

Программное обеспечение телекоммуникационных технологий

Для передачи данных с использованием возможностей телекоммуникационных технологий применяется специальное программное обеспечение. Это обеспечение функционирует по определенным протоколам или по механизмам, разработанным с целью упростить и стандартизировать работу всех узлов сети, выстроив ее по единому алгоритму.

Так, для передачи по компьютерным сетям разработан стандарт MIME (ssr-Multipurpose Internet Mail Extensions), переводящий данные в формат понятный почтовому серверу. Общение компьютера пользователя и сервера происходит в виде диалога в режиме Клиент-Сервер, где с каждой стороны его участником является определенная программа.

Отдельные программы используются для работы мессенджеров, которые позволяют обмениваться сообщениями, совершать телефонные звонки с передачей голосовой и видеоинформации. Здесь происходит коммуникация не только компьютер - почтовый сервер, к диалогу подключаются и телефонные станции.

Сетевые телекоммуникационные технологии

Различные сетевые телекоммуникационные технологии позволяют решать такие задачи, как:

  • передачу информации в необходимых форматах;

  • выстраивание коммуникаций;

  • обеспечение взаимодействия различных участников сети.

Среди новых технологий особое место занимают программы, позволяющие работать в режиме нетворкинга, объединение CRM-систем с возможностями социальных сетей и многое другое.

Создание корпоративных сетей как офисных, компьютерных, так и телефонных, также попадает в область сетевых технологий, призванных обеспечить синергию за счет эффективной коммуникации пользователей.

Технологии защиты информации в телекоммуникационных сетях

Большая часть информационных массивов, принадлежащих государственным учреждениям и коммерческим предприятиям, имеет самостоятельную ценность и является добычей для потенциальных похитителей, которыми могут быть и хакеры, и внутренние пользователи.

Для защиты информации от утечек разработаны сложные программные продукты, позволяющие определить проникновение неавторизованного пользователя или вируса-похитителя информации в сеть и блокировать его.

Существуют специальные стандарты защиты информации, но даже они не всегда могут уберечь сети от взлома и хищения данных. Особенно уязвимы компьютеры и мобильные устройства частных пользователей, использующих только антивирусы.

От хищения информации с помощью закладных устройств, перехватывающих электромагнитные излучения, необходимо бороться при помощи технических средств.

Использование телекоммуникационных технологий

Телекоммуникационные технологии сегодня в основном применяются для организации систем связи.

Но сами системы связи имеют прикладное значение, при помощи этих технологий можно достичь существенно более важных целей, среди которых:

  • создание систем дистанционного обучения;

  • обеспечение недорогой голосовой телефонной связи;

  • создание информационных систем предприятий и объединение их в комплекс, позволяющий оптимизировать управление;

  • построение банковских сетей;

  • проведение электронных аукционов и тендеров для обеспечения государственных закупок;

  • осуществление коммуникации удаленных субъектов;

  • для интернет-торговли;

  • осуществление дистанционного управления в государственной и в частной сфере.

Спектр возможностей использования телекоммуникационных технологий расширяется с каждым днем. Сложно сказать, что именно будет предложено завтра в этой области, чтобы сделать связь доступнее, а производственные процессы - проще.

Развитие телекоммуникационных технологий

Появление новой науки - телематики позволило использовать возможность для передачи информационных данных на расстоянии. В основе науки лежит система, объединяющая телекоммуникационные средства и информатику. Данное свойство значительно увеличило территорию участников связи.

Характерная особенность информационных технологий состоит в том, что в рабочем процессе используется единственный продукт - информация. Процесс интеллектуальной обработки способствует сбору, хранению и распространению информационных данных.

Современные информационные телекоммуникационные технологии

Телекоммуникационные технологии предусматривают использование информационных сетей и компьютерной техники.

Общесетевой ресурс представлен аппаратным типом, информационными разработками, программным обеспечением, для них имеют значение следующие требования:

  • компьютерная техника различных сетей соединяется автоматически;

  • каждая единица компьютерной техники является составляющим звеном сети, но также работает в самостоятельном режиме;

  • связь обеспечивается посредством телефонной связи, оптоволоконным соединением и спутниковыми каналами.

Интернет располагает различными сервисами, самыми распространенными считаются: обмен сообщениям в режиме электронной почты, услуги электронной доски объявлений, передача файлов.

Телекоммуникационные технологии в образовании

Наша жизнь протекает в информационном обществе, поэтому с самого детства следует учиться новым телекоммуникационным технологиям.

В образовательной системе их применяют для дистанционного обучения, виртуального общения, самообразования, получения необходимой информации.

Разработанная федеральная целевая программа, направленная на развитие образовательной информационной среды, стала предпосылкой для внедрения ее в сфере образования и науки.

Телекоммуникационные технологии и услуги для банковских сетей

Политика национальных телекоммуникационных компаний, экономическое положение и географическое расположение являются факторами, влияющими на выбор технологии по передаче информации в банковской системе.

Современные банковские коммуникации позволяют проводить межбанковские платежи с электронной подписью, шифрование документа.

Переход телекоммуникационных систем на частные спутниковые каналы позволит модернизировать банковскую систему. В этом случае выгодно применять виртуальные частные сети, которые арендуют сети общего пользования.

Крупные телекоммуникационные компании

Сфера предоставления телекоммуникационных услуг отмечена крупнейшими поставщиками проводной, сотовой связи, интернет провайдинга, кабельного телевидения.

Лидерами отрасли являются компании «МТС», «Ростелеком», «Мегафон», «ТрансТелеКом», «Эр-телеком», «Межрегиональный Транзиттелеком», «Космическая связь».

Сегодня современный рынок телекоммуникации продолжает демонстрировать признаки насыщения, но бизнес-операторы ищут новые ниши для дальнейшего развития.

Одним из основных направлений является предоставление комплексного сервиса на стыке информационных технологий и телекоммуникаций.

Современные телекоммуникационные технологии разных видов демонстрируется на выставке «Связь», проходящей в ЦВК Москвы.

Читайте другие наши статьи:

Онтопсихология выработала целую серию правил, рекомендаций для формирования личности менеджера, бизнесмена, руководителя высшего уровня, которые подвластны уже практически любому руководителю, способному осознать их полезность, необходимость. Из всего свода этих рекомендаций целесообразно выделить и обобщить следующие:

1. Не нужно разрушать свой имидж бесчестными поступками, мошенничеством.

2. Не следует недооценивать делового партнера, считать его глупее себя, пытаться обманывать его и предлагать рыночную систему низкого уровня.

3. Никогда не объединяйтесь с теми, кто неспособен устроить свои собственные дела.

Если у Вас в команде работает человек, терпящий крах во всех своих начинаниях, то можно предсказать, что через несколько лет Вас тоже ожидает крах или большие убытки. Для патологических неудачников, даже если они честные и неглупые, характерная бессознательная запрограммированность, незрелость и нежелание нести ответственность за свою жизнь. Это уже социальная психосоматика.

4. Никогда не берите в команду глупца. От него необходимо держаться подальше в работе и в личной жизни. Иначе могут наступить непредсказуемые последствия для руководителя.

5. Никогда не берите в свою команду того, кто фрустрирован из-за Вас.

Не руководствуйтесь в подборе кадров преданностью, обольщаясь лестью или искренней любовью. Эти люди могут оказаться несостоятельными в сложных служебных ситуациях. Выбирать надо тех, кто верит в свой труд, кто использует работу для достижения собственных интересов, кто хочет сделать карьеру, улучшить свое материальное положение. Отлично служа руководителю (хозяину) он может достичь всех этих целей, удовлетворить личный эгоизм.

6. Для того, чтобы зарабатывать, процветать, надо уметь обслуживать партнеров, культивировать собственную манеру поведения.

Основная тактика не в том, чтобы понравиться партнеру, а в том, чтобы изучить его потребности и интересы и учесть их при деловом общении. Необходимо выстраивать ценностные взаимоотношения с носителями богатства, успеха.

7. Никогда нельзя смешивать личные и деловые отношения, личную жизнь и работу.

Отличного руководителя должны отличать утонченный вкус в личной жизни и высшая разумность, необыкновенный стиль в деловой сфере.

8. Настоящему руководителю необходим менталитет единственного человека, владеющего абсолютным правом на окончательную идею.

Известно, что самые крупные проекты настоящих руководителей обязаны своим успехом его молчанию.

9. При принятии решения надо ориентироваться на глобальный успех для фирмы, т.е. когда результат принесет пользу всем, кто работает на руководителя и кого он ведет за собой.

Кроме этого для того, чтобы решение было оптимальным необходимы:

сохранение всего позитивного, что создано до настоящего момента;

осторожная рациональность на основе имеющихся средств;

рациональная интуиция (если она, конечно, присуща руководителю, т.к. это уже качество руководителя – лидера)

10. Закон необходимо соблюдать, обходить, приспосабливаться к нему и использовать его.

Эта формулировка, несмотря на ее противоречивость, имеет глубокий смысл и в любом случае означает, что деятельность руководителя все же всегда должна находиться в правом поле, но сделать это можно разными путями. Закон представляет собой силовую структуру социума, соединительную ткань между руководителем и другими, физически настроенными «за» или «против» него.

11. Всегда нужно следовать плану опережения ситуации, не уделять слишком много внимания ошибочному действию.

При отсутствии строжайшего контроля со стороны руководителя ситуация объективизирует его и, в конечном счете, несмотря на то, что мог сделать все, он не делает ничего и возникает, стремительно развивается стресс.

12. Всегда необходимо создавать повседневную эстетику, т.к. к великим целям ведет достижение совершенства в мелочах.

Целое достигается посредством упорядоченного согласования частей. Объекты, оставленные в беспорядке, всегда являются протагонистами. Руководитель, лишая самого себя эстетики, грабит свою эстетическую способность.

Чтобы эффективно руководить, надо обладать соразмерностью в 4-х сферах: индивидуальной личной, семейной, профессиональной и социальной.

13. Для того, чтобы избегать конфликтов, которые нас ежедневно подстерегают, нужно не забывать о 2-х принципах: избегать ненависти и мести; никогда не брать чужого, что Вам не принадлежит в соответствии с внутренней ценностью вещей.

В общем случае всех руководителей, коммерсантов и бизнесменов, региональных и партийных лидеров можно разделить на 2 класса:

Первый класс состоит из лиц, которые в своей основе в деятельности преследуют личностные и (или) общественные гуманистические, нравственные цели.

Второй класс преследует личностные и (или) общественные эгоистические, монополистические цели (в интересах группы лиц).

Первый класс лиц способен осознать необходимость использования рассмотренных выше правил и рекомендаций. Значительная часть этих лиц в силу своей порядочности и рациональной интуиции уже использует их, даже не будучи ознакомлены с этими рекомендациями.

Вторая группа лиц, которых можно условно назвать новыми русскими («НР»), неспособна к осознанию этой проблемы в силу своих личностных качеств и в силу отсутствия пока, к сожалению цивилизованной социально-экономической среды в стране:

Общение с этой группой имеет целый ряд негативных сторон, т.к. «НР» имеют целый ряд отрицательных профессионально-важных качеств (табл. 23).

Таблица 23

Отрицательные профессионально-важные качества (ПВК) «НР»

Психологические качества Психофизиологические качества
1. Безответственностть 1. Непродуктивность и нелогичность мышления
2. Агрессивность 2. Консерватизм мышления
3. Вседозволенность 3. Отсутствие оперативности мышления в нестандартных ситуациях
4. Безнаказанность 4. Неустойчивость внимания.
5. Размытость понятия «законность действий» 5. Плохая оперативная память
6. Завышенная профессиональная самооценка 6. Неспособность к координации различных способов восприятия информации.
7. Категоричность 7. Замедленное реагирование на изменение ситуации
8. Самонадеянность 8. Неумение действовать нешаблонно
9. Низкая профессиональная и межличностная компетентность 9. Отсутствие гибкости в принятии решений

Данные негативные стороны общения вызывают целый ряд конфликтов, которые не всегда имеют личностный характер и в силу массовости и зачастую специфичности порождают целый ряд уже общественных, ведомственных и государственных проблем и в, конечном счете, сказываются на психологической безопасности руководителей, как личностей и даже на национальной безопасности страны. Переломить данную ситуацию можно только за счет целенаправленного формирования цивилизованной социально-экономической среды с ориентацией на гуманистические, нравственные, общенациональные цели и широкую пропаганду достижений онтопсихологии в области формирования личности руководителей высшего уровня. Конечной целью этого процесса является смена ценностных ориентаций самых широких кругов населения. На национальную безопасность, очевидно, оказывает соотношение количества лиц первого и второго класса. Вполне возможно, что в настоящее время численность лиц во второй группе больше, чем в первой. При каком превышении количества лиц в первом классе над вторым может быть обеспечена национальная безопасность – вопрос сложный. Может быть, при этом должно выполняться типовое условие достоверности статических гипотез (95%). В любом случае при выполнении перечисленных выше мероприятий, количество лиц в первом классе будет увеличиваться, а втором – сокращаться и сам этот процесс уже будет оказывать благотворное влияние.


Миронова Е.Е. Сборник психологических тестов. Часть 2.

Компьютерные сети и телекоммуникации

Компьютерная сеть - объединение нескольких ЭВМ для совместного решения информационных, вычислительных, учебных и других задач.

Сети ЭВМ породили существенно новые технологии обработки информации - сетевые технологии. В простейшем случае сетевые технологии позволяют совместно использовать ресурсы - накопители большой емкости, печатающие устройства, доступ в Internet, базы и банки данных. Наиболее современные и перспективные подходы к сетям связаны с использованием коллективного разделения труда при совместной работе с информацией - разработке различных документов и проектов, управлении учреждением или предприятием и т.д.

Простейшим видом сети является, так называемая, одноранговая сеть, обеспечи­вающая связь персональных компьютеров конечных пользователей и позволяющая совместно использовать дисководы, принтеры, файлы. Более развитые сети помимо компьютеров конечных пользователей - рабочих станций - включают специальные выделенные компьютеры - серверы. Сервер -это ЭВМ, выполняющая в сети особые функции обслуживания остальных компь­ютеров сети - рабочих ст анций. Есть разные виды серверов: файловые, телеком­муникационные серверы, серверы для проведения математических расчетов, серверы баз данных.

Весьма популярная сегодня и чрезвычайно перспективная технология обработки информации в сети называется «клиент - сервер». В методологии «клиент - сервер» предполагается глубокое разделение функций компьютеров в сети. При этом в функции «клиента» (под которым понимается ЭВМ с соответствующим программным обеспечением) входит

Предоставление пользовательского интерфейса, ориентированного на опреде­ленные производственные обязанности и полномочия пользователя;

Формирование запросов к серверу, причем не обязательно информируя об этом пользователя; в идеале пользователь вообще не вникает в технологию общении ЭВМ, за которой он работает, с сервером;

Анализ ответов сервера на запросы и предъявление их пользователю. Основная функция сервера - выполнение специфических действий по запросам

клиента (например, решение сложной математической задачи, поиск данных в базе, соединение клиента с другим клиентом и т.д.); при этом сам сервер не инициирует никаких взаимодействий с клиентом. Если сервер, к которому обратился клиент, не в состоянии решить задачу из-за нехватки ресурсов, то в идеале он сам находит другой, более мощный, сервер и передает задачу ему, становясь, в свою очередь, клиентом, ноне информируя об этом без нужды начального клиента. Обратим внимание, что «клиент» вовсе не есть выносной терминал сервера. Клиентом может быть весьма мощный компьютер, который в силу своих возможностей решает задачи самостоятельно.

Компьютерные сети и сетевые технологии обработки информации стали основой для построения современных информационных систем. Компьютер ныне следует рассматривать не как отдельное устройство обработки, а как «окно» в компьютерные сети, средство коммуникаций с сетевыми ресурсами и другими пользователями сетей.

Локальные сети (ЛС ЭВМ) объединяют относительно небольшое число компью­теров (обычно от 10 до 100, хотя изредка встречаются и гораздо большие) в преде­лах одного помещения (учебный компьютерный класс), здания или учреждении (например, университета). Традиционное название - локальная вычислительная сеть (ЛВС)

Различают:

Локальные вычислительные сети или ЛВС (LAN, Local Area Network) -сети, имеющие географически небольшие размеры (комната, этаж здания, здание или несколько расположенных рядом зданий). В качестве среды передачи данных используют, как правило, кабель. Однако в последнее время набирают популярность беспроводные сети. Близкое расположение компьютеров продиктовано физическими законами передачи сигналов по используемым в ЛВС кабелям или мощностью передатчика беспроводных сигналов. ЛВС могут объединять от нескольких единиц до нескольких сотен компьютеров.

Простейшая ЛВС, например, может состоять из двух ПК, связанных кабелем или беспроводными адаптерами.

Интерсети или сетевые комплексы - две и более ЛВС, объединенные специальными устройствами для поддержки больших ЛВС. Являются, по сути, сетями сетей.

Глобальные сети - (WAN, Wide Area Network) ЛВС, соединенные средствами удаленной передачи данных.

Корпоративные сети - глобальные сети, находящиеся в ведении одной организации.

С точки зрения логической организации сети бывают одноранговые и иерархические.

Большое влияние на развитие ЛС оказало создание автоматизированных систем управления предприятиями (АСУ). АСУ включают несколько автоматизированных рабочих мест (АРМ), измерительных комплексов, пунктов управления. Другое важнейшее поле деятельности, в котором ЛС доказали свою эффективность - создание классов учебной вычислительной техники (КУВТ).

Благодаря относительно небольшим длинам линий связи (как правило, не более 300 метров), по ЛC можно передавать информацию в цифровом виде с высокой скоростью передачи. На больших расстояниях такой способ передачи неприемлем из-за неизбежного затухания высокочастотных сигналов, в этих случаях приходится прибегать к дополнительным техническим (цифро-аналоговым преобразованиям) и программным (протоколам коррекции ошибок и др.) решениям.

Характерная особенность ЛС - наличие связывающего всех абонентов высокоскоростного канала связи для передачи информации в цифровом виде. Существуют проводные и беспроводные каналы. Каждый из них характеризуется определенными значениями существенных с точки зрения организации ЛС параметров:

Скорости передачи данных;

Максимальной длины линии;

Помехозащищенности;

Механической прочности;

Удобства и простоты монтажа;

Стоимости.

В настоящее время обычно применяют четыре типа сетевых кабелей:

Коаксиальный кабель;

Незащищенная витая пара;

Защищенная витая пара;

Волоконно-оптический кабель.

Первые три типа кабелей передают электрический сигнал по медным проводникам. Волоконно-оптические кабели передают свет по стеклянному волокну.

Беспроводная связь на радиоволнах СВЧ диапазона может использоваться для организации сетей в пределах больших помещений типа ангаров или павильонов, там где использование обычных линий связи затруднено или нецелесообразно. Кроме того, беспроводные линии могут связывать удаленные сегменты локальных сетей на расстояниях 3 - 5 км (с антенной типа волновой канал) и 25 км (с направленной параболической антенной) при условии прямой видимости. Организации беспроводной сети существенно дороже, чем обычной.

Для организации учебных ЛС чаще всего используется витая пара, как сама! дешевая, поскольку требования к скорости передачи данных и длине линий не являются критическими.

Для связи компьютеров с помощью линий связи ЛС требуются адаптеры сети (или, как их иногда называют, сетевые пла ты). Самыми известными являются: адаптеры следующих трех типов:

ArcNet;