Воздушные линии электропередачи ЛЭП: конструкция, разновидности, параметры. Железобетонные опоры электропередачи

Для опытного электрика, не первый год работающего с воздушными линиями электропередач, не составит ни какого труда, визуально определить напряжение ВЛ по
виду изоляторов, опор, и количеству проводов в линии без всяких приборов. Хотя в большинстве случаев чтобы определить напряжение на ВЛ достаточно лишь взглянуть на изоляторы. После прочтения этой статьи, Вы тоже легко сможете определить напряжение ВЛ по изоляторам.

Фото 1. Штыревые изоляторы на напряжение 0.4, 6-10, 35 кВ.

Это должен знать каждый человек! Но почему, зачем человеку далекому от электроэнергетики уметь определять напряжение воздушной линии электропередач по внешнему виду изоляторов и количеству изоляторов в гирлянде ВЛ? Ответ очевиден, все дело в электробезопасности. Ведь для каждого класса напряжения ВЛ, есть минимально допустимые расстояния, ближе которых приближаться к проводам ВЛ смертельно опасно.

В моей практики было несколько несчастных случаев связанных с неумением определить класс напряжения ВЛ. Поэтому далее привожу таблицу из правил по технике безопасности, в которой указаны минимально допустимые расстояния, ближе которых приближаться к токоведущим частям, находящимся под напряжением смертельно опасно.

Таблица 1. Допустимые расстояния до токоведущих частей, находящихся под напряжением.

*Постоянный ток.

Случай первый произошел на стройплощадке загородного дома. По неизвестной причине на стройке не было электроэнергии, недалеко от недостроенного дома проходила ВЛ-10кВ. Двое рабочих решили запитать от этой ВЛ удлинитель, для подключения электроинструмента. Зачистив два провода на удлинителе и сделав крючки, они решили при помощи палки зацепить их к проводам. На ВЛ-0,4 кВ эта схема бы работала. Но так как напряжение ВЛ было 10кВ один рабочий получил серьезные электротравмы, и чудом остался жив.

Второй случай произошел на территории производственной базы при разгрузке труб. Рабочий стропальщик разгружал с помощью автокрана металлические трубы из грузовика в зоне действия ВЛ-110кВ. В ходе разгрузки, трубы наклонились, так что один конец опасно приблизился к проводам. И даже, несмотря на то что не было непосредственного контакта проводов с грузом, из за высокого напряжения произошел пробой и рабочий погиб. Ведь убить током от ВЛ-110 кВ может даже без прикосновения к проводам, достаточно к ним лишь приблизится. Думаю теперь понятно почему так важно уметь определять напряжение ВЛ по виду изоляторов.

Главный принцип здесь заключается в том, что чем выше напряжение ЛЭП, тем большее количество изоляторов будет в гирлянде. Кстати, самая высоковольтная ЛЭП в мире находится в России, ее напряжение 1150кВ.

Первый тип линий напряжение которых нужно знать в лицо, это ВЛ-0,4 кВ. Изоляторы данных ВЛ самые маленькие, обычно это штыревые изоляторы изготовленные из фарфора или стекла, закрепленные на стальных крюках. Количество проводов в такой линии может быть либо два, если это 220В, либо 4 и более, если это 380В.

Фото 2. деревянная опора ВЛ-0.4 кВ.

Второй тип это ВЛ-6 и 10кВ, внешне они не отличаются. ВЛ- 6кВ постепенно уходят в прошлое уступая место воздушным линиям 10кВ. Изоляторы данных линий обычно штыревые, но заметно больше изоляторов 0.4кВ. На угловых опорах могут быть использованы подвесные изоляторы, количеством один или два в гирлянде. Изготавливаются они так же из стекла или фарфора, и крепятся на стальных крюках. Итак: главное визуальное отличие ВЛ-0.4кВ от ВЛ-6, 10кВ, это более крупные изоляторы, а так же всего три провода в линии.

Фото 3. Деревянная опора ВЛ-10 кВ.

Третий тип это ВЛ-35кВ. Здесь уже используются подвесные изоляторы, или штыревые, но гораздо большего размера. Количество подвесных изоляторов в гирлянде может быть от трех до пяти в зависимости от опоры и типа изоляторов. Опоры могут быть как бетонные, так и изготовленные из металлоконструкций, а так же из дерева, но тогда тоже это будет конструкция, а не просто столб.

Фото 4. Деревянная опора ВЛ-35 кВ.

ВЛ-110кВ от 6 изоляторов в гирлянде. Каждая фаза, одиночный провод. Опоры бывают железобетонные, деревянные (почти не используют) и собранные из металлоконструкций.

ВЛ-220кВ от 10 изоляторов в гирлянде. Каждая фаза выполняется толстым одиночным проводом. Напряжением выше 220кВ опоры собираются из металлоконструкций либо железобетонные.

Фото 5. Железобетонная опора ВЛ-110 кВ.

ВЛ-330кВ от 14 изоляторов в гирлянде. Идет по два провода в каждой фазе. Охранная зона данных воздушных линий электропередачи составляет 30 метров по обе стороны от крайних проводов.

Фото 7. Опора ЛЭП 330 кВ.

ВЛ-500кВ от 20 изоляторов в гирлянде, каждая фаза выполняется тройным проводом расположенным треугольником. Охранная зона 40 метров.

Фото 8. Опора ЛЭП 500 кВ.

ВЛ-750кВ от 20 изоляторов в гирлянде. В каждой фазе идет 4 либо 5 проводов расположенных квадратом либо кольцом. Охранная зона 55 метров.

Фото 9. Опора ЛЭП 750 кВ.

Таблица 2. Количество изоляторов в гирлянде ВЛ.

Что обозначают надписи на опорах ВЛ?

Наверняка многие видели надписи на опорах ЛЭП в виде букв и цифр, но не каждый знает, что они означают.

Фото 10. Обозначения на опорах ЛЭП.

Означают они следующее: заглавной буквой обозначается класс напряжения, например Т-35 кВ, С-110 кВ, Д-220 кВ. Цифра после буквы указывает на номер линии, вторая цифра указывает на порядковый номер опоры.

Т- значит 35 кВ.
45- номер линии.
105- порядковый номер опоры.
Данный способ определения напряжения ЛЭП по количеству изоляторов в гирлянде не является точным и не дает 100% гарантии. Россия огромная страна, поэтому для разных условий эксплуатации ЛЭП (чистота окружающего воздуха, влажность и т.д.) проектировщики рассчитывали разное количество изоляторов и использовали разные типы опор. Но если к вопросу подходить комплексно и определять напряжение по всем критериям, которые описаны в статье, то можно достаточно точно определить класс напряжения. Если Вы далеки от электроэнергетики, то для 100% определения напряжения ЛЭП Вам все же лучше обратится в местное энергетическое предприятие.

Основными элементами воздушных линий являются провода, изоляторы, линейная арматура, опоры и фундаменты. На воздушных линиях переменного трехфазного тока подвешивают не менее трех проводов, составляющих одну цепь; на воздушных линиях постоянного тока - не менее двух проводов.

По количеству цепей ВЛ подразделяются на одно, двух и многоцепные. Количество цепей определяется схемой электроснабжения и необходимостью ее резервирования. Если по схеме электроснабжения требуются две цепи, то эти цепи могут быть подвешены на двух отдельных одноцепных ВЛ с одноцепными опорами или на одной двухцепной ВЛ с двухцепными опорами. Расстояние / между соседними опорами называют пролетом, а расстояние между опорами анкерного типа - анкерным участком.

Провода, подвешиваемые на изоляторах (А, - длина гирлянды) к опорам (рис. 5.1, а), провисают по цепной линии. Расстояние от точки подвеса до низшей точки провода называется стрелой провеса /. Она определяет габарит приближения провода к земле А, который для населенной местности равен: до поверхности земли до 35 и ПО кВ - 7 м; 220 кВ - 8 м; до зданий или сооружений до 35 кВ - 3 м; 110 кВ - 4 м; 220 кВ - 5 м. Длина пролета / определяется экономическими условиями. Длина пролета до 1 кВ обычно составляет 30…75 м; ПО кВ - 150…200 м; 220 кВ - до 400 м.

Разновидности опор электропередач

В зависимости от способа подвески проводов опоры бывают:

  1. промежуточные, на которых провода закрепляют в поддерживающих зажимах;
  2. анкерного типа, служащие для натяжения проводов; на этихопорах провода закрепляют в натяжных зажимах;
  3. угловые, которые устанавливают на углах поворота ВЛ с подвеской проводов в поддерживающих зажимах; они могут быть промежуточные, ответвительные и угловые, концевые, анкерные угловые.

Укрупнено же опоры ВЛ выше 1 кВ подразделяются на два вида анкерные, полностью воспринимающие тяжение проводов и тросов в смежных пролетах; промежуточные, не воспринимающие тяжение проводов или воспринимающие частично.

На ВЛ применяют деревянные опоры (рис. 5Л, б, в), деревянные опоры нового поколения (рис. 5.1, г), стальные (рис. 5.1, д) и железобетонные опоры.

Деревянные опоры ВЛ

Деревянные опоры ВЛ все еще имеют распространение в странах, располагающих лесными запасами. Достоинствами дерева как материала для опор являются: небольшой удельный вес, высокая механическая прочность, хорошие электроизоляционные свойства, природный круглый сортамент. Недостатком древесины является ее гниение, для уменьшения которого применяют антисептики.

Эффективным методом борьбы с гниением является пропитка древесины маслянистыми антисептиками. В США осуществляется переход к деревянным клееным опорам.

Для ВЛ напряжением 20 и 35 кВ, на которых применяют штыревые изоляторы, целесообразно применение одностоечных свечеобразных опор с треугольным расположением проводов. На воздушных ЛЭП 6 -35 кВ со штыревыми изоляторами при любом расположении проводов расстояние между ними D, м, должно быть не меньше значений, определяемых по формуле


где U - линии, кВ; - наибольшая стрела провеса, соответствующая габаритному пролету, м; Ь - толщина стенки гололеда, мм (не более 20 мм).

Для ВЛ 35 кВ и выше с подвесными изоляторами при горизонтальном расположении проводов минимальное расстояние между проводами, м, определяется по формуле


Стойку опоры выполняют составной: верхнюю часть (собственно стойку) - из бревен длиной 6,5…8,5 м, а нижнюю часть (так называемый пасынок) - из железобетона сечением 20 х 20 см, длиной 4,25 и 6,25 м или из бревен длиной 4,5…6,5 м. Составные опоры с железобетонным пасынком сочетают в себе преимущества железобетонных и деревянных опор: грозоустойчивость и сопротивляемость гниению в месте касания с грунтом. Соединение стойки с пасынком выполняют проволочными бандажами из стальной проволоки диаметром 4…6 мм, натягиваемой при помощи скрутки или натяжным болтом.

Анкерные и промежуточные угловые опоры для ВЛ 6 - 10 кВ выполняют в виде Аобразной конструкции с составными стойками.

Стальные опоры электропередачи

Широко применяют на ВЛ напряжением 35 кВ и выше.

По конструктивному исполнению стальные опоры могут быть двух видов:

  1. башенные или одностоечные (см. рис. 5.1, д);
  2. портальные, которые по способу закрепления подразделяютсяна свободностоящие опоры и опоры на оттяжках.

Достоинством стальных опор является их высокая прочность, недостатком - подверженность коррозии, что требует при эксплуатации проведения периодической окраски или нанесения антикоррозийного покрытия.

Опоры изготавливают из стального углового проката (в основном применяют равнобокий уголок); высокие переходные опоры могут быть изготовлены из стальных труб. В узлах соединения элементов применяют стальной лист различной толщины. Независимо от конструктивного исполнения стальные опоры выполняют в виде пространственных решетчатых конструкций.

Железобетонные опоры электропередачи

По сравнению с металлическими более долговечны и экономичны в эксплуатации, так как требуют меньше ухода и ремонта (если брать жизненный цикл, то железобетонные - более энергозатратны). Основное преимущество железобетонных опор - уменьшение расхода стали на 40…75%, недостаток - большая масса. По способу изготовления железобетонные опоры подразделяются на бетонируемые на месте установки (большей частью такие опоры применяют зарубежом) и заводского изготовления.

Крепление траверс к стволу стойки железобетонной опоры выполняют с помощью болтов, пропущенных через специальные отверстия в стойке, или с помощью стальных хомутов, охватывающих ствол и имеющих цапфы для крепления на них концов поясов траверс. Металлические траверсы предварительно подвергают горячей оцинковке, поэтому они долгое время не требуют при эксплуатации специального ухода и наблюдения.

Провода воздушных линий выполняют неизолированными, состоящими из одной или нескольких свитых проволок. Провода из одной проволоки, называемые однопроволочными (их изготавливают сечением от 1 до 10 мм2), имеют меньшую прочность и применяются только на ВЛ напряжением до 1 кВ. Многопроволочные провода, свитые из нескольких проволок, применяются на ВЛ всех напряжений.

Материалы проводов и тросов должны иметь высокую электрическую проводимость, обладать достаточной прочностью, выдерживать атмосферные воздействия (в этом отношении наибольшей стойкостью обладают медные и бронзовые провода; провода из алюминия подвержены коррозии, особенно на морских побережьях, где в воздухе содержатся соли; стальные провода разрушаются даже в нормальных атмосферных условиях).

Для ВЛ применяют однопроволочные стальные провода диаметром 3,5; 4 и 5 мм и медные провода диаметром до 10 мм. Ограничение нижнего предела обусловлено тем, что провода меньшего диаметра имеют недостаточную механическую прочность. Верхний предел ограничен из-за того, что изгибы однопроволочного провода большего диаметра могут вызвать в его внешних слоях такие остаточные деформации, которые будут снижать его механическую прочность.

Многопроволочные провода, скрученные из нескольких проволок, обладают большой гибкостью; такие провода могут выполняться любым сечением (их изготавливают сечением от 1,0 до 500 мм2).

Диаметры отдельных проволок и их количество подбирают так, чтобы сумма поперечных сечений отдельных проволок дала требуемое общее сечение провода.

Как правило, многопроволочные провода изготавливают из круглых проволок, причем в центре помещается одна или несколько проволок одинакового диаметра. Длина скрученной проволоки немного больше длины провода, измеренной по его оси. Это вызывает увеличение фактической массы провода на 1 …2 % по сравнению с теоретической массой, которая получается при умножении сечения провода на длину и плотность. Во всех расчетах принимается фактическая масса провода, указанная в соответствующих стандартах.

Марки неизолированных проводов обозначают:

  • буквами М, А, АС, ПС - материал провода;
  • цифрами - сечение в квадратных миллиметрах.

Алюминиевая проволока А может быть:

  • марки AT (твердой неоттоженной)
  • AM (отожженной мягкой) сплавов АН, АЖ;
  • АС, АСХС - из стального сердечника и алюминиевых проволок;
  • ПС - из стальных проволок;
  • ПСТ - из стальной оцинкованной проволоки.

Например, А50 обозначает алюминиевый провод, сечение которого равно 50 мм2;

  • АС50/8 - сталеалюминевый провод сечением алюминиевой части 50 мм2, стального сердечника 8 мм2 (в электрических расчетах учитывается проводимость только алюминиевой части провода);
  • ПСТЗ,5, ПСТ4, ПСТ5 - однопроволочные стальные провода, где цифры соответствуют диаметру провода в миллиметрах.

Стальные тросы, применяемые на ВЛ в качестве грозозащитных, изготавливают из оцинкованной проволоки; их сечение должно быть не менее 25 мм2. На ВЛ напряжением 35 кВ применяют тросы сечением 35 мм2; на линиях ПО кВ - 50 мм2; на линиях 220 кВ и выше -70 мм2.

Сечение многопроволочных проводов различных марок определяется для ВЛ напряжением до 35 кВ по условиям механической прочности, а для ВЛ напряжением ПО кВ и выше - по условиям потерь на корону. На ВЛ при пересечении различных инженерных сооружений (линий связи, железных и шоссейных дорог и т.д.) необходимо обеспечивать более высокую надежность, поэтому минимальные сечения проводов в пролетах пересечений должны быть увеличены (табл. 5.2).

При обтекании проводов потоком воздуха, направленным поперек оси ВЛ или под некоторым углом к этой оси, с подветренной стороны провода возникают завихрения. При совпадении частоты образования и перемещения вихрей с одной из частот собственных колебаний провод начинает колебаться в вертикальной плоскости.

Такие колебания провода с амплитудой 2…35 мм, длиной волны 1…20 м и частотой 5…60 Гц называются вибрацией.

Обычно вибрация проводов наблюдается при скорости ветра 0,6… 12,0 м/с;

Стальные провода не допускаются в пролетах над трубопроводами и железными дорогами.



Вибрация, как правило, имеет место в пролетах длиной более 120 м и на открытой местности. Опасность вибрации заключается в обрыве отдельных проволок провода на участках их выхода из зажимов изза повышения механического напряжения. Возникают переменные от периодических изгибов проволок в результате вибрации и сохраняются в подвешенном проводе основные растягивающие напряжения.

В пролетах длиной до 120 м защиты от вибрации не требуется; не подлежат защите и участки любых ВЛ, защищенных от поперечных ветров; на больших переходах рек и водных пространств требуется защита независимо от в проводах. На ВЛ напряжением 35 …220 кВ и выше защиту от вибрации выполняют путем установки виброгасителей, подвешенных на стальном тросе, поглощающих энергию вибрирующих проводов с уменьшением амплитуды вибрации около зажимов.

При гололеде наблюдается так называемая пляска проводов, которая, так же как и вибрация, возбуждается ветром, но отличается от вибрации большей амплитудой, достигающей 12… 14 м, и большей длиной волны (с одной и двумя полуволнами в пролете). В плоскости, перпендикулярной оси ВЛ, провод На напряжении 35 - 220 кВ провода изолируют от опор гирляндами подвесных изоляторов. Для изоляции ВЛ 6 -35 кВ применяют штыревые изоляторы.

Проходя по проводам ВЛ, выделяет теплоту и нагревает провод. Под влиянием нагрева провода происходят:

  1. удлинение провода, увеличение стрелы провеса, изменение расстояния до земли;
  2. изменение натяжения провода и его способности нести механическую нагрузку;
  3. изменение сопротивления провода, т. е. изменение потерь электрической мощности и энергии.

Все условия могут изменяться при наличии постоянства параметров окружающей среды или изменяться совместно, воздействуя на работу провода ВЛ. При эксплуатации ВЛ считают, что при номинальном токе нагрузки температура провода составляет 60…70″С. Температура провода будет определяться одновременным воздействием тепловыделения и охлаждения или теплоотвода. Теплоотвод проводов ВЛ возрастает с увеличением скорости ветра и понижением температуры окружающего воздуха.

При уменьшении температуры воздуха от +40 до 40 °С и увеличении скорости ветра от 1 до 20 м/с тепловые потери изменяются от 50 до 1000 Вт/м. При положительных температурах окружающего воздуха (0…40 °С) и незначительных скоростях ветра (1 …5 м/с) тепловые потери составляют 75…200 Вт/м.

Для определения воздействия перегрузки на увеличение потерь сначала определяется


где RQ - сопротивление провода при температуре 02, Ом; R0] - сопротивление провода при температуре, соответствующей расчетной нагрузке в условиях эксплуатации, Ом; А/.у.с - коэффициент температурного увеличения сопротивления, Ом/°С.

Увеличение сопротивления провода по сравнению с сопротивлением, соответствующим расчетной нагрузке, возможно при перегрузке 30 % на 12 %, а при перегрузке 50 % - на 16 %

Увеличения потери AUпри перегрузке до 30 % можно ожидать:

  1. при расчете ВЛ на AU =5% А?/30 = 5,6%;
  2. при расчете ВЛ на А17= 10 % Д?/30 = 11,2 %.

При перегрузке ВЛ до 50 % увеличение потери будет равно соответственно 5,8 и 11,6 %. Учитывая график нагрузки, можно отметить, что при перегрузке ВЛ до 50 % потери кратковременно превышают допустимые нормативные значения на 0,8… 1,6 %, что существенно не влияет на качество электроэнергии.

Применение провода СИП

С начала века получили распространение низковольтные воздушные сети, выполненные как самонесущая система изолированных проводов (СИП).

Используется СИП в городах как обязательнаяпрокладка, как магистраль в сельских зонах со слабой плотностью населения, ответвления к потребителям. Способы прокладки СИП различны: натягивание на опорах; натягивание по фасадам зданий; прокладка вдоль фасадов.

Конструкция СИП (униполярных бронированных и небронированных, триполярных с изолированной или голой несущей нейтралью) в общем случае состоит из медной или алюминиевой проводниковой многопроволочной жилы, окруженной внутренним полупроводниковым экструдированным экраном, затем - изоляцией из шитого полиэтилена, полиэтилена или ПВХ. Герметичность обеспечивается порошком и компаундированной лентой, поверх которых расположен металлический экран из меди или алюминия в виде спирально уложенных нитей или ленты, с использованием экструдированного свинца.

Поверх подушки кабельной брони, выполненной из бумаги, ПВХ, полиэтилена, делают броню из алюминия в виде сетки из полосок и нитей. Внешняя защита выполнена из ПВХ, полиэтилена без гелогена. Пролеты прокладки, рассчитанные с учетом ее температуры и сечения проводов (не менее 25 мм2 для магистралей и 16 мм2 на ответвлениях к вводам для потребителей, 10 мм2 для сталеалюминиевого провода) составляют от 40 до 90 м.

При небольшом повышении затрат (около 20 %) по сравнению с неизолированными проводами надежность и безопасность линии, оснащенной СИП, повышается до уровня надежности и безопасности кабельных линий. Одним из преимуществ воздушных линий с изолированными проводами ВЛИ перед обычными ЛЭП является снижение потерь и мощности за счет уменьшения реактивного сопротивления. Параметры прямой последовательности линий:

  • АСБ95 - R = 0,31 Ом/км; Х= 0,078 Ом/км;
  • СИП495 - соответственно 0,33 и 0,078 Ом/км;
  • СИП4120 - 0,26 и 0,078 Ом/км;
  • АС120 - 0,27 и 0,29 Ом/км.

Эффект от снижения потерь при применении СИП и неизменности тока нагрузки может составлять от 9 до 47 %, потерь мощности - 18 %.

Воздушные линии электропередачи различают по ряду критериев. Приведем общую классификацию.

I. По роду тока

Рисунок. ВЛ постоянного тока напряжением 800 кВ

В настоящее время передача электрической энергии осуществляется преимущественно на переменном токе. Это связано с тем, что подавляющее большинство источников электрической энергии вырабатывают переменное напряжение (исключением являются некоторые нетрадиционные источники электрической энергии, например, солнечные электростанции), а основными потребителями являются машины переменного тока.

В некоторых случаях передача электрической энергии на постоянном токе предпочтительнее. Схема организации передачи на постоянном токе приведена на рисунке ниже. Для уменьшения нагрузочных потерь в линии при передаче электроэнергии на постоянном токе, как и на переменном, с помощью трансформаторов увеличивают напряжение передачи. Кроме этого при организации передачи от источника к потребителю на постоянном токе необходимо преобразовать электрическую энергию из переменного тока в постоянный (с помощью выпрямителя) и обратно (с помощью инвертора).

Рисунок. Схемы организации передачи электрической энергии на переменном (а) и постоянном (б) токе: Г – генератор (источник энергии), Т1 – повышающий трансформатор, Т2 – понижающий трансформатор, В – выпрямитель, И – инвертор, Н – нагрузка (потребитель).

Преимущества передачи электроэнергии по ВЛ на постоянном токе следующие:

  1. Строительство воздушной линии дешевле, так как передачу электроэнергии на постоянном токе можно осуществлять по одному (монополярная схема) или двум (биполярная схема) проводам.
  2. Передачу электроэнергии можно осуществлять между несинхронизированными по частоте и фазе энергосистемами.
  3. При передаче больших объемов электроэнергии на большие расстояния потери в ЛЭП постоянного тока становятся меньше чем при передаче на переменном токе.
  4. Предел передаваемой мощности по условию устойчивости энергосистемы выше, чем у линий переменного тока.

Основной недостаток передачи электроэнергии на постоянном токе это необходимость применения преобразователей переменного тока в постоянный (выпрямителей) и обратно, постоянного в переменный (инверторов), и связанные с этим дополнительные капитальные затраты и дополнительные потери на преобразование электроэнергии.

ВЛ постоянного тока не получили в настоящее время широкого распространения, поэтому в дальнейшем мы будем рассматривать вопросы монтажа и эксплуатации ВЛ переменного тока.

II. По назначению

  • Сверхдальние ВЛ напряжением 500 кВ и выше (предназначены для связи отдельных энергосистем).
  • Магистральные ВЛ напряжением 220 и 330 кВ (предназначены для передачи энергии от мощных электростанций, а также для связи энергосистем и объединения электростанций внутри энергосистем - к примеру, соединяют электростанции с распределительными пунктами).
  • Распределительные ВЛ напряжением 35 и 110 кВ (предназначены для электроснабжения предприятий и населённых пунктов крупных районов - соединяют распределительные пункты с потребителями)
  • ВЛ 20 кВ и ниже, подводящие электроэнергию к потребителям.

III. По напряжению

  1. ВЛ до 1000 В (низковольтные ВЛ).
  2. ВЛ выше 1000 В (высоковольтные ВЛ):

Как можно обозначит значение линий электропередач? Есть ли точное определение проводам, по которым передается электроэнергия? В межотраслевых правилах технической эксплуатации электроустановок потребителей есть точное определение. Итак, ЛЭП – это, во-первых, электрическая линия. Во-вторых, это участки проводов, которые выходят за пределы подстанций и электрических станций. В-третьих, основное назначение линий электропередач – это передача электрического тока на расстоянии.

По тем же правилам МПТЭЭП производится разделение ЛЭП на воздушные и кабельные. Но необходимо отметить, что по линиям электропередач производится также передача высокочастотных сигналов, которые используются для передачи телеметрических данных, для диспетчерского управления различными отраслями, для сигналов противоаварийной автоматики и релейной защиты. Как утверждает статистика, 60000 высокочастотных каналов сегодня проходят по линиям электропередач. Скажем прямо, показатель значительный.

Воздушные ЛЭП

Воздушные линии электропередач, их обычно обозначают буквами «ВЛ» – это устройства, которые располагаются на открытом воздухе. То есть, сами провода прокладываются по воздуху и закрепляются на специальной арматуре (кронштейны, изоляторы). При этом их установка может проводиться и по столбам, и по мостам, и по путепроводам. Не обязательно считать «ВЛ» те линии, которые проложены только по высоковольтным столбам.

Что входит в состав воздушных линий электропередач:

  • Основное – это провода.
  • Траверсы, с помощью которых создаются условия невозможности соприкосновения проводов с другими элементами опор.
  • Изоляторы.
  • Сами опоры.
  • Контур заземления.
  • Молниеотводчики.
  • Разрядники.

То есть, линия электропередач – это не просто провода и опоры, как видите, это достаточно внушительный список различных элементов, каждый из которых несет свои определенные нагрузки. Сюда же можно добавить оптоволоконные кабели, и вспомогательное к ним оборудование. Конечно, если по опорам ЛЭП проводятся высокочастотные каналы связи.

Строительство ЛЭП, а также ее проектирование, плюс конструктивные особенности опор определяются правилами устройства электроустановок, то есть ПУЭ, а также различными строительными правилами и нормами, то есть СНиП. Вообще, строительство линий электропередач – дело непростое и очень ответственное. Поэтому их возведением занимаются специализированные организации и компании, где в штате есть высококвалифицированные специалисты.

Классификация воздушных линий электропередач

Сами воздушные высоковольтные линии электропередач делятся на несколько классов.

По роду тока:

  • Переменного,
  • Постоянного.

В основе своей воздушные ВЛ служат для передачи переменного тока. Редко можно встретить второй вариант. Обычно он используется для питания сети контактной или связной для обеспечения связью несколько энергосистем, есть и другие виды.

По напряжению воздушные ЛЭП делятся по номиналу этого показателя. Для информации перечислим их:

  • для переменного тока: 0,4; 6; 10; 35; 110; 150; 220; 330; 400; 500; 750; 1150 киловольт (кВ);
  • для постоянного используется всего один вид напряжение – 400 кВ.

При этом линии электропередач напряжением до 1,0 кВ считаются низшего класса, от 1,0 до 35 кВ – среднего, от 110 до 220 кВ – высокого, от 330 до 500 кВ – сверхвысокого, выше 750 кВ ультравысокого. Необходимо отметить, что все эти группы отличаются друг от друга лишь требованиями к расчетным условиям и конструктивным особенностям. Во всем остальном – это обычные высоковольтные линии электропередач.


Напряжение ЛЭП соответствует их назначению.

  • Высоковольтная линия напряжением свыше 500 кВ считаются сверхдальними, они предназначаются для соединения отдельных энергосистем.
  • Высоковольтная линия напряжением 220, 330 кВ считаются магистральными. Их основное назначение – соединить между собой мощные электростанции, отдельные энергосистемы, а также электростанции внутри данных систем.
  • Воздушные ЛЭП напряжением 35-150 кВ устанавливаются между потребителями (большими предприятиями или населенными пунктами) и распределительными пунктами.
  • ВЛ до 20 кВ используются в качестве линий электропередач, которые непосредственно подводят электрический ток к потребителю.

Классификация ЛЭП по нейтрале

  • Трехфазные сети, в которых нейтраль не заземлена. Обычно такая схема используется в сетях напряжением 3-35 кВ, где протекают малые токи.
  • Трехфазные сети, в которых нейтраль заземлена через индуктивность. Это так называемый резонансно-заземленный тип. В таких ВЛ используется напряжение 3-35 кВ, в которых протекают токи большой величины.
  • Трехфазные сети, в которых нейтральная шина полностью заземлена (эффективно-заземленная). Этот режим работы нейтрали используется в ВЛ со средним и сверхвысоким напряжением. Обратите внимание, что в таких сетях необходимо использовать трансформаторы, а не автотрансформаторы, в которых нейтраль заземлена наглухо.
  • И, конечно, сети с глухозаземленной нейтралью. В таком режиме работают ВЛ напряжением ниже 1,0 кВ и выше 220 кВ.

К сожалению, существует и такое разделения линий электропередач, где учитывается эксплуатационное состояние всех элементов ЛЭП. Это ЛЭП в нормальном состоянии, где провода, опоры и другие составляющие находятся в приличном состоянии. В основном упор делается на качество проводов и тросов, они не должны быть оборваны. Аварийное состояние, где качество проводов и тросов оставляет желать лучшего. И монтажное состояние, когда производится ремонт или замена проводов, изоляторов, кронштейнов и других компонентов ЛЭП.


Элементы воздушной ЛЭП

Между специалистами всегда происходят разговоры, в которых применяются специальные термины, касающиеся линий электропередач. Непосвященному в тонкости сленга понять этот разговор достаточно сложно. Поэтому предлагаем расшифровку этих терминов.

  • Трасса – это ось прокладки ЛЭП, которая проходит по поверхности земли.
  • ПК – пикеты. По сути, это отрезки трассы ЛЭП. Их длина зависит от рельефа местности и от номинального напряжения трассы. Нулевой пикет – это начало трассы.
  • Строительство опоры обозначается центровым знаком. Это центр установки опоры.
  • Пикетаж – по сути, это простая установка пикетов.
  • Пролет – это расстояние между опорами, а точнее, между их центрами.
  • Стрела провеса – это дельта между самой низшей точкой провеса провода и строго натянутой линией между опорами.
  • Габарит провода – это опять-таки расстояние между самой низшей точкой провеса и самой высшей точкой пролегаемых под проводами инженерных сооружений.
  • Петля или шлейф. Это часть провода, которая соединяет на анкерной опоре провода соседних пролетов.

Кабельные ЛЭП

Итак, переходим к рассмотрению такого понятия, как кабельные линии электропередач. Начнем с того, что это не голые провода, которые используются в воздушных линиях электропередач, это закрытые в изоляцию кабели. Обычно кабельные ЛЭП представляют собой несколько линий, установленные рядом друг с другом в параллельном направлении. Длины кабеля для этого бывает недостаточно, поэтому между участками устанавливаются соединительные муфты. Кстати, нередко можно встретить кабельные линии электропередач с маслонаполнением, поэтому такие сети часто укомплектовываются специальной малонаполнительной аппаратурой и системой сигнализации, которая реагирует на давление масла внутри кабеля.

Если говорить о классификации кабельных линий, то они идентичны классификации линий воздушных. Отличительные особенности есть, но их не так много. В основном эти две категории отличаются между собой способом прокладки, а также конструктивными особенностями. К примеру, по типу прокладки кабельные ЛЭП делятся на подземные, подводные и по сооружениям.


Две первые позиции понятны, а что относится к позиции «по сооружениям»?

  • Кабельные туннели. Это специальные закрытые коридоры, в которых производится прокладка кабеля по установленным опорным конструкциям. В таких туннелях можно свободно ходить, проводя монтаж, ремонт и обслуживание электролинии.
  • Кабельные каналы. Чаще всего они являются заглубленными или частично заглубленными каналами. Их прокладка может производиться в земле, под напольным основанием, под перекрытиями. Это небольшие каналы, в которых ходить невозможно. Чтобы проверить или установить кабель, придется демонтировать перекрытие.
  • Кабельная шахта. Это вертикальный коридор с прямоугольным сечением. Шахта может быть проходной, то есть, с возможностью помещаться в нее человеку, для чего она снабжается лестницей. Или непроходной. В данном случае добраться до кабельной линии можно, только сняв одну из стенок сооружения.
  • Кабельный этаж. Это техническое пространство, обычно высотою 1,8 м, оснащенное снизу и сверху плитами перекрытия.
  • Укладывать кабельные линии электропередач можно и в зазор между плитами перекрытия и полом помещения.
  • Блок для кабеля – это сложное сооружение, состоящее из труб прокладки и нескольких колодцев.
  • Камера – это подземное сооружение, закрытое сверху железобетонной или плитой. В такой камере производится соединение муфтами участков кабельной ЛЭП.
  • Эстакада – это горизонтальное или наклонное сооружение открытого типа. Она может быть надземной или наземной, проходной или непроходной.
  • Галерея – это практически то же самое, что и эстакада, только закрытого типа.

И последняя классификация в кабельных ЛЭП – это тип изоляции. В принципе, основных видов два: твердая изоляция и жидкостная. К первой относятся изоляционные оплетки из полимеров (поливинилхлорид, сшитый полиэтилен, этилен-пропиленовая резина), а также другие виды, к примеру, промасленная бумага, резино-бумажная оплетка. К жидкостным изоляторам относится нефтяное масло. Есть и другие виды изоляции, к примеру, специальными газами или другими видами твердых материалов. Но их используют сегодня очень редко.

Заключение по теме

Разнообразие линий электропередач сводится к классификации двух основных видов: воздушных и кабельных. Оба варианта сегодня используются повсеместно, поэтому не стоит отделять один от другого и давать предпочтение одному перед другим. Конечно, строительство воздушных линий сопряжено с большими капиталовложениями, потому что прокладка трассы – это установка опор в основном металлических, которые имеют достаточно сложную конструкцию. При этом учитывается, какая сеть, под каким напряжением будет прокладываться.